电动汽车用永磁同步电机驱动控制器设计

分享到:
522
下一篇 >

摘要:电动汽车驱动电机频繁工作于启动/停车、加/减速等复杂工况下,较工业用电机需要更宽的转速范围和更高的过载系数,同时对控制器的开发提出了较大的挑战。设计了一种适用于电动汽车的永磁同步电机(PMSM)控制器。给出了主电路的设计方法及驱动、检测和保护单元的参考电路。软件部分采用矢量控制,并根据实时性要求将任务划分为4级。*后搭建平台,对控制器的性电动汽车;永磁同步电机;控制器

1 引言

    当前主电路;IGBT驱动电路及开关电DSP控制电路;电压、电流、温度、转速的检测电路、故障与保护电路;开关量输入输出电路;模拟量输入输出电路、485/CAN通信电路和操作器电路,其硬件结构如图1所示。

2.1 控制器主电路设计

    控制器设计之初,需确定控制器负载、供电电①负载参数要求:负载额定功率Pn、额定电压un、额定电流in和过载倍数kg等;②电额定电压及变化范围;③其他要求:工作环境条件、结构尺寸限制等。根据某电动汽车的要求,此处研制的控制器性额定功率55 kW;额定转速4 500 r·min-1;峰值功率82.5 kW;峰值功率运行时间5 min;电动方式转速范围0~9 000 r·min-1;发电方式转速范围800~9 000 r·min-1;基速峰值及额定功率时的效率89%~93%;工作电压范围405~583.2 V;扭矩控制精度为:额定扭矩以下:±5 N·m,额定扭矩以上:5%;扭矩控制响应时间小于100 ms;速度控制响应时间为在200 ms时进入±50 r·min-1误差之内;速度控制精度:负载从0~100%变化,速度变化小于±1%;扭矩和速度控制模式的转换时间20 ms。

2.1.1 控制器容量选择

    由于电机控制器传给驱动电机的是脉动电流,其脉动值比工频供电时电流要大,因此须将电机控制器的容量留有适当的裕量。变频器应满足:

   

    式中:Scn为电机控制器的额定容量;Pn,η,cosφ分别为电机输出功率、效率、功率因数,η=0.85,cosφ=0.8;K为电流波形的修正系数,PWM方式取1.05~1.1。

2.1.2 IGBT电压选择

    IGWT电压应

   

    式中:Udcmax为母线*高电压;α为过电压保护系数,取α=1.15;β为**系数,一般取β=1.1;Ldi/dt为母线电感引起的尖峰电压,这里取100 V。

    通过对式(2)进行计算得到Ucesp=858.7 V,这样应选择Uces=1 200V的元件。

2.1.3 IGBT电流规格选择

    IGBT电流的选择,需保证电机峰值电流在IGBT的**工作区内。IGBT的额定电流应满足:

   

    式中:S为电机控制器容量,此处S=114kVA;kg=1.5;kjw为考虑结温的电流降额系数,此处kjw=1.4;U0为驱动电机线电压,

    由式(3)可得,Ic应大于508.94 A,根据IGBT的等级应选择Ic=600 A的元件。

2.2 IGBT驱动电路设计

    根据IGBT驱动电路的性其参数为:可驱动IGBT*高为150 A/1 200 V级;光学隔离,带故障反馈输出;16脚贴片封装,CMOS/TTL兼容,500 ns开关速度;软关断技术,集成过流、欠压保护功能;15~30 V宽电压工作环境。

    由HCPL316J构成的驱动电路如图2所示。由于选用的Ic=600 A,HCPL316J不能够直接驱动,故经过推挽放大后驱动IGBT。

2.3 信号检测电路设计

    信号检测电路包括母线电压、母线电流、驱动电机三相电流、控制器温度、电机温度和电机转子位置与转速的采样与调理电路。除转子位置与速度采样电路外,其他信号均为模拟量,需经过隔离后,调理成ADC单元可以处理的信号。

2.3.1 相电流采样电路

    采样电路由滤波调理电路和偏移限幅电路组成。从电流传感器输出的与实际电流成比例的信号,经一阶低通滤波和比例运算后,得到幅值为-1.65~1.65 V,再经偏置电路转换为0~3.3 V。

2.3.2 位置与速度检测电路

    选用旋转变压器作为转子位置传感器,旋转变压器适用于工作环境恶劣的场合,具有较强的抗干扰能力。旋变/数字转换器采用AD2S12 05,能获取转子的**位置信息。采用5 V电源供电,外接8.912 MHz的晶振。根据所选旋转变压器的励磁电压电流要求,设计励磁环节的运算放大电路,保证接收的正余弦信号峰峰值为(3.6±36%)V。

2.3.3 故障与保护电路

    W相过流保护电路将采集的电流信号与预先设定的极限值进行比较,当超过极限值时,触发故障锁存电路。故障锁存与**电路中,各种故障信号相与后,经过RS触发器,触发PDPINTA中断,并封锁PWM输出。当故障已被消除时,通过DSP可将RS触发器复位。该电路还能保证DSP复位过程中对PWM信号的封锁。

3 控制单元软件设计

    电机控制器控制框图如图3所示。驱动电机控制器采用旋转变压器直接获取转子位置和速度,采用霍尔电流传感器直接检测定子三相电流。控制器利用转子位置信息将三相电流进行坐标变换,得到d,q轴电流反馈值。d,q轴电流参考信号与实际值比较后,其偏差值被输入至调节器,调节器的输出与解耦电路输出相加,便得到磁场定向d,q轴系中两轴电压参考值udref和uqref,通过Park逆变换,转换为α,β轴参考电压uαrad,uβref,经过SVPWM模块产生控制逆变器各功率开关的开通和关断信号。其中,主控芯片采用TMS320LF2407A,其很适合于电动机的实时控制。

    电机控制程序采用前后台系统来完成。前台系统为中断级程序,包括T1定时器下溢中断服务程序,实现电机控制的核心算法和故障中断,包括XINT1外部中断服务程序和PDPINTA中断服务程序,用于封锁PWM输出。T1定时器下溢中断服务程序如图4所示,故障中断服务程序如图5所示。

    后台系统为任务级程序,流程图如图6所示。

    一个完整的驱动电机控制器,不仅要实现电机的控制算法,还要具备运行控制、参数设置和工作状态监视等功能。此处将这些功能在任务级程序中实现。驱动电机控制器可通过操作键盘、控制端子和通信程序设定控制命令、运行频率,修改相关功能码参数,监控控制器工作状态及故障信息。

    任务级程序是一个无限循环系统,根据各种任务的实时性要求,将其划分为4个等级,如故障检测函数和参数设置函数每1 ms执行1次,而对于输入输出端子的处理函数则要每10ms执行1次。

4 实验

    为验证和调试驱动电机控制器,进行了实验研究。驱动电机测试系统由AVL测功机、Digatron电池模拟器、功率分析仪、驱动电机及其控制器组成。测功机采用转速控制方式,提供负载;功率分析仪采集直流母线电压电流、电机输入侧的电压电流、测功机输出的转矩和转速信息,并实时传送至上位机保存实验数据;电池模拟器为驱动电机及其控制器提供电能;dSPACE通过CAN总线或者模拟量控制电机的输出转矩。

    驱动电机在加速、平稳运行和制动3个阶段下的转速、转矩曲线和电压、电流波形如图7所示。由图可知,系统电流控制特性良好。

5 结论

    电动汽车要求电机及其控制器具有转速范围宽、过载系数高的特点,研制的利用DSP构成的永磁同步电机控制系统,具有控制功能强、速度快、保护功能完善及工作性能稳定等特点。整个线路外围元件少、走线简单、逆变器体积小,可靠性高,能够满足电动汽车电驱动系统的要求。

你可能感兴趣: 设计应用 图片 IGBT CMOS 控制器 汽车
无觅相关文章插件,快速提升流量