ARMCortex-M3微处理器测试方法研究与实现

分享到:
199
下一篇 >

  摘要:作为32 位RISC 微处理器主流芯片,ARM 芯片得到长足发展和广泛应用。因而,ARM 芯片的测试需求更加强劲的同时,测试工作量在加大,测试复杂度也在增加。本文给出了基于ARM Cortex-M3 的微处理器测试方法,该方法也可用于类似结构的微处理器测试。

  0 引言

  随着半导体技术的发展,集成电路制程工艺从深亚微米发展到纳米级,晶体管集成度的大幅提高使得芯片复杂度增加,单个芯片的功的微处理器,即ARM 微处理器,已遍及工业控制。消费类电子产品。通信系统。的性的微处理器,一类是没有仿真接口的微处理器,对于配备类似JTAG 接口的微处理器,测试仪通过仿真一个JTAG 接口对被测芯片进行功.JTAG(Joint Test Action Group,联合测试行动小组)是一种国际标准测试协议(IEEE 1149.1 兼容),主要用于芯片内部测试。现在多数的**器件都支持JTAG协议,如ARM.DSP.FPGA 器件等。标准的JTAG 接口是4 线:

  TMS.TCK.TDI.TDO,分别为模式选择。时钟。数据输入和数据输出线.JTAG *初是用来对芯片进行测试的,因此使用JTAG 接口测试微处理器具有很多优点。

  用JTAG 接口对微处理器进行仿真测试,是通过测试系统用测试矢量模拟一个JTAG 接口实现对微处理器的仿真控制,其核心是状态机的模拟,图2 所示为测试系统使用的JTAG TAP 控制器的状态转换图。

  

  通过测试仪来模拟状态转换就可以实现JTAG 通信控制。

  JTAG 在物理层和数据链路层具有统一的规范,但针对不同的芯片仿真测试协议可。单步执行(stepping)。指令断点。数据观察点。寄存器和存储器访问。性以及各种跟踪机制.Cortex-M3 的调试系统基于ARM *的总线接口。通过DAP 可以访问芯片的寄存器,也可以访问系统存储器,并且可以在内核运行的时候访问,这就对芯片的测试提供了接口支持。集成Cortex-M3 内核的微处理器一般提供一个调试端口(DP)与DAP 相连,目前可用的调试端口包括SWJ‐DP,既支持传统的JTAG 调试,也支持.ETM 可以不断地发出跟踪信息,这些信息通过跟踪端口接口单元(TPIU)送到内核的外部,对于外部集成再跟踪信息分析仪的ARM 芯片,可把TIPU 输出的已执行指令信息捕捉到,并且送给芯片测试系统。

  2.2 测试向量生成

  用自动测试设备(ATE)测试ARM 芯片是一种传统的测试技术,其优点是可以灵活编制测试向量,专注于应用相关的功生成,才能产生比较完备的测试集。本文介绍的ARM 芯片测试方法,借助对应的ARM 芯片开发工具产生测试代码,再由专用的测试向量生成工具生成测试向量。这种方法的优点是能针对ARM 芯片应用开发人员关心的测试集合产生测试向量,因而比较高效,测试成本也能控制在比较低的水平上。此外,可以借助大量的ARM 芯片应用软件来转码,能大幅减少工作量。缺点是不容易用算法来实现自动生成完备的测试代码。

  

  图5 为ARM 芯片测试向量生成器。测试代码一般可以从ARM 芯片开发例程中获得,测试向量通过编译器编译成ARM 芯片可执行代码,然后与激励向量和期望向量混合生成完整的ARM 芯片测试向量.ARM 芯片测试向量生成工具通过时间参数来确定测试代码。激励向量与期望向量之间的时序关系,ARM 芯片时间参数可从芯片手册中获得。测试向量生成后,通过BC3192 集成开发环境下载到测试系统图形卡中,启动测试程序,激励向量依序施加到被测ARM 芯片的输入端口,同时对输出端进行监测比较获得测试结果。综上,测试向量的产生是ARM 芯片测试的核心,本文所述测试向量生成器通过输入ARM 芯片可执行代码和芯片时间参数来产生测试逻辑,具有易用。高效的特点,现已用于多个ARMCortex 内核微处理器的测试中。

  3 结论

  本文通过分析ARM Cortex-M3 内核的工作原理和跟踪调试方法,利用通用的ARM 集成开发环境,结合BC3192V50 测试系统的测试向量生成器,能够快速高效产生基于ARM Cortex-M3 内核的微处理器测试向量,进而完成功能和直流参数测试。本案所述方法同样适于其他微处理器的测试.

你可能感兴趣: 技术文章 图片 微处理器 ARM FPGA
无觅相关文章插件,快速提升流量