基于FPGA的ARM并行总线设计与仿真分析

分享到:
334
下一篇 >

  在数字系统的设计中,FPGA+ARM的系统架构得到了越来越广泛的应用,FPGA主要实现高速数据的处理;ARM主要实现系统的流程控制。人机交互。外部通信以及FPGA控制等功CS.WE.OE.DATA[310].ADDR[230].BLS等。CS为片选信号,WE为写使方式,其余端口均为IN(输入)方式。从端口的功只有顶层设计才。OUT(输出)端口并加上方向控制端口。顶层设计的VHDL代码如下:

  

  其中,DATA_i.DATA_o和output_en均为FPGA内部的信号,在内部的各层次模块中,通过这三个信号就可以进行单向的IO控制。这样,顶层设计中双向的DATA端口转化为了内部单向的DATA_i(输入)。DATA_o(输出)和output_en(输出使。在内部各模块中,结合这三个信号以及ADDR。OE。WE。CS等信号,则可方便地实现ARM总线接口的功

  

  3 仿真结果分析

  通过QuartusII仿真工具,对FPGA并行总线进行时序仿真;仿真结果如图3所示。根据ARM并行总线的读写时序图要求,从仿真结果可以看出FPGA的总线接口设计满足了设计的要求。由于选用的FPGA器件内部带有逻辑分析仪的功能模块,通过QuartusII软件中的SignalTapII逻辑分析工具,对FPGA的设计模块进行在线测试,发现总线时序了满足ARM并行总线的要求,且工作稳定,从另一个角度验证了设计和仿真结果的正确性。

  

  4 结论

  由于FPGA技术和ARM技术应用越来越广泛,通过设计并行总线接口来实现两者之间的数据交换,可以较容易地解决快速传输数据的需求,因此设计满足系统要求的FPGA并行总线显得尤为重要。本文设计的FPGA的ARM外部并行总线接口,满足了总线的时序要求,并在某航空机载雷达应答机中进行了应用,系统运行稳定,性能良好。以上的设计和仿真方法,对其他类似的设计也有一定的参考作用。

你可能感兴趣: 技术文章 图片 ARM FPGA QuartusII 总线
无觅相关文章插件,快速提升流量