单晶多晶组件CTM差异性,你知道吗?

分享到:
247
下一篇 >

本文主要研究了导致组件CTM损失的可能因素,重点分析了造成单晶组件和多晶组件CTM差异的原因。光学损失和B-O复合之间的差异决定了多晶组件的CTM损失要少于单晶组件,对于硼氧复合损失可以想办法改善,但对于光学损失的差异,针对单晶没有更好的解决方法。

随着光伏产业的快速发展,使晶体硅太阳电池及其组件成为研究的热点,以实现太阳电池组件效益的*大化。电池封装为组件不仅可以使电池的电压、电流和输出功率得到保证,而且还可以保护电池不受环境损害和机械损伤。晶体硅太阳电池经过封装为组件后,组件的功率(实际功率)与所有电池片的功率之和(理论功率)的差值,称为组件封装功率损失,其计算公式为:组件功率损失=(理论功率-实际功率)/理论功率。

通常我们使用组件输出功率与电池片功率总和的百分比(Cell To Module简称CTM值)表示组件功率损失的程度,CTM值越高表示组件封装功率损失的程度越小。如果CTM值较低,组件的输出功率有可能达不到预期的要求,遭到客户的投诉,*终造成经济效益的损失。

与此相反,如果可以提高CTM值,组件的输出功率的增加会提高公司组件产品的收益,已达到降低生产成本的目的。在组件产品的生产过程中发现单晶组件和多晶组件的CTM差别比较大。在组件生产工序完全一致的情况下,单晶组件CTM损失要高于多晶组件,本文主要针对单晶和多晶组件CTM的差异性进行研究,解释单多晶组件CTM不同的内在原因。

1、组件CTM影响因素

影响CTM的因素很多,包括:

A.光学损耗:制绒绒面不同引起的光学反射、玻璃和EVA等引起的反射损失。

B.电阻损耗,电池片本身的串联电阻损耗、焊带,汇流条本身的电阻引起的损耗,焊带**导致的接触电阻、接线盒的电阻。

C.不同电流的电池片串联时引起的电流失配损失,由于组成组件的各电池片*大工作点电流不匹配造成的失配损失(分档,低效片混入)。

D.热损耗,组件温度升高会引起的输出功率下降。

E.B-O复合引起的电池片效率衰减,与本征衰退损失。

F.组件生产过程中产生隐裂或碎片。

影响单晶和多晶组件CTM差异的因素主要包括2个方面,光学损耗和硼氧复合损耗。光学损耗产生的差异主要为单多晶电池产品的制绒工艺是不同的,反射率的差异性比较大;B-O复合损耗的差异为单多晶原料片生长工艺不同,单晶原料过程中引入的硼氧对要多于多晶原料。本文设计实验主要针对以上两点进行实验设计,分析造成单多晶组件CTM差异性的原因。

2、实验设计

2.1、实验样品

样品采集自晶澳电池产线,所用硅片厚度为200μm,电阻率为1-3Ω.cm的单晶和多晶电池片各20片,并且20片单晶电池片为同一个功率档位,20片多晶电池片为同一个功率档位。

2.2、实验步骤

单多晶电池片分别选取10片进行LID测试;单多晶电池片分别选取5片进行量子效率(QE)测试;单多晶电池片分别选5片采用相同的焊接和封装工艺制成小型组件,并进行QE测试。

2.3、实验测试

10片电池片先测量功率等各项参数,然后在稳态太阳模拟器或自然阳光条件下,连续照射5小时(控制光强1000w/m2),完成之后重新检测功率等参数,分析实验前后电池片功率损失情况,即为LID测试。

QE量子效率是指电池片的量子效率为太阳能电池的电荷载流子数目与照射在太阳能电池表面一定能量的光子数目的比率。某一波长的光照射在电池表面时,每一光子平均所能产生的载流子数目,为太阳能电池的量子效率,也成为光谱响应,简称QE。

12下一页全文本文导航第 1 页:单晶多晶组件CTM差异性,你知道吗?第 2 页:实验结果与分析

你可能感兴趣: 业界新闻 太阳能电池 电池片
无觅相关文章插件,快速提升流量