如何设计聚合物锂电池的保护电路

分享到:
327
下一篇 >

锂电池产品以高能量密度、长循环寿命、快速充放电、高电池电压、工作温度范围广、无记忆等优异特性占据了市场很大份额。然而,锂电池产品在充放电过程中的过充电、过放电、放电过电流及其它异常状态(例如负载短路),将会导致内部发热,可能引起电池或其它器件的损害,严重影响到电池使用的**性。因此,锂电池产品保护电路的设计应用必不可少。

基于标准CMOS工艺,设计了一种全功能电池保护电路。通过过放电检测输出端、过充电检测输出端的CMOS输出电平控制外接的两个N沟道场效应开关晶体管的关断,从而达到对电池实施保护的目的。基于全功能电池保护电路原理,针对过放电、过充电、放电过电流、负载短路等异常状态设置了相应的保护机制。 电池保护电路原理分析

电池保护电路应用示意图如下图所示。实线框内为电池保护电路的系统结构图,框外为外围器件连接示意图。

DOUT为过放电检测的CMOS输出,COUT为过充电检测的CMOS输出,VDD为电池电压输入,VSS为芯片接地引脚,DS为响应延迟时间缩短控制输入端,V-为放电过流检测端。

在充电时,若电池电压高于过充电检测电压并保持相应的延迟时间,COUT端由高电位变为低电位,充电控制MOS管MC关断,芯片进入过充电保护状态,停止充电。

 如何设计聚合物锂电池的保护电路

在放电时,若电池电压低于过放电检测电压并保持相应的延迟时间,DOUT端由高电位变为低电位,放电控制MOS管MD关断,芯片进入过放电保护模式,停止放电。

锂离子/锂聚合物电池保护电路芯片应用电路图以及内部系统结构框图

在放电时,芯片同时监控V-端电压。当因电流过大引起V-端电压高于放电过电流检测电压,而低于短路检测电压时,芯片进入放电过电流保护状态;当V-端电压高于短路检测电压时,芯片进入短路保护状态。此时,DOUT端输出由高电位变为低电位,关断MD防止电路中通过强电流。

R1和C1起到对外接充电器或与其并联的二次电池的电压波动进行平滑滤波抑制的作用。而电阻R1、R2为当对电池反向充电或充电器充电电压超过芯片**极限额定充电电压值时的限流电阻。

如何设计聚合物锂电池的保护电路 http://www.juda.cn/

该系统中主要包括过充电检测电路(VD1)、过放电检测电路(VD2)、放电过电流检测电路(VD3)和短路检测电路、电平转换电路、基准电路、振荡电路以及偏置电路等。

你可能感兴趣: 聚合物锂电池 设计应用
无觅相关文章插件,快速提升流量