高效深紫外LED再创*低波长纪录 波长为232~270nm

分享到:
12301
下一篇 >

有杀手之称的UV-C紫外光,波长仅200到280奈米、能量高,可以穿透病毒、**、**和尘螨的薄膜,攻击DNA并歼灭这些有害的有机体。

自丹麦教授Niels Finsen发现用紫外线可**结核病后,人类利用紫外线**已经有超过百年历史。但目前使用的深紫外线灯不只体积庞大、效率低,而且皆含水银,对环境有害。

美国康乃尔大学的研究团队,*新就研发出一种体积小且更环保的深紫外线LED光源,并创下目前业界deep-UV LED*低波长的纪录。

研究人员采用原子级控制界面的氮化镓(GaN)与氮化铝(AlN)单层薄膜为反应作用区域,成功发射出波长介于232到270奈米的深紫外LED。这种232奈米的深紫外线,创下使用氮化镓为发光材料,所发出的光线波长*短记录。之前的记录是由日本团队创下的239奈米。

图为研究团队成员,照片来源:美国康乃尔大学

研究论文《MBE-grown 232-270nm deep-UV LED susing monolayer thin binary GaN/AlN quantum heteros tructures》于1月27号发表于《应用物理快报》期刊(Applied Physics Letters)网站。

提高紫外线LED效率

目前紫外线LED*大瓶颈就是发光效率,可以由三个方面来衡量:

1.注入效率:注入反应作用区域的电子通过装置的比例。

2.内量子效率(IQE):反应作用区域中所有电子产生光子或紫外线的比例。

3.出光效率:反应作用区域中产出的光子比例,这些光子可以从装置中取出,而且是可以利用的。

论文作者之一SM(Moudud)Islam博士表示:「如果上述三个方面的效率都达到50%,相乘起来只有八分之一,等于发光效率已经降到12%。」

在深紫外线波段,这三方面的效率都很低,但研究团队发现,利用氮化镓取代传统的铝氮化镓,可以提高内量子效率和出光效率。

而为了提高注入效率,研究团队采用之前开发出的技术,在正极(电子)和负极(电洞)载体区域,采用极化感应掺杂法来实现。

研究发展

在成功提升深紫外LED的发光效率后,研究团队的下一步是将光源整合到装置内,朝上市的目标迈进。深紫外光的应用领域包含食物保鲜、假钞辨别、光触媒、水的净化**等等。

你可能感兴趣: 业界新闻 图片 LED GaN
无觅相关文章插件,快速提升流量