光电耦合器知识大全

分享到:
点击量: 232199

  光电耦合器*概述

  光电耦合器(optical coupler,英文缩写为OC)是以光为媒介传输电信号的一种电一光一电转换器件。它由发光源和受光器两部分组成。把发光源和受光器组装在同一密闭的壳体内,彼此间用透明绝缘体隔离。发光源的引脚为输入端,受光器的引脚为输出端,常见的发光源为发光二极管,受光器为光敏二极管、光敏三极管

  光电耦合器对输入、输出电信号有良好的隔离作用,所以,它在各种电路中得到广泛的应用。目前它已成为种类*多、用途*广的光电器件之一。光电耦合器的种类较多,常见有光电二极管型、光电三极管型、光敏电阻型、光控晶闸管型、光电达林顿型、集成电路型等。(外形有金属圆壳封装,塑封双列直插等)。

  光耦合器一般由三部分组成:光的发射、光的接收及信号放大。输入的电信号驱动发光二极管(LED),使之发出一定波长的光,被光探测器接收而产生光电流,再经过进一步放大后输出。这就完成了电—光—电的转换,从而起到输入、输出、隔离的作用。由于光耦合器输入输出间互相隔离,电信号传输具有单向性等特点,因而具有良好的电绝缘能力和抗干扰能力。

  光电耦合器是一种发光器件和光敏器件组成的光电器件。它能实现电—光—电信号的变换,并且输入信号与输出信号是隔离的。目前极大多数的光耦输入部分采用砷化镓红外发光二极管,输出部分采用硅光电二极管、硅光电三极管及光触发可控硅。这是因为峰值波长900~940nm的砷化镓红外发光二极管能与硅光电器件的响应峰值波长相吻合,可获得较高的信号传输效率。

  光电耦合器*工作原理

  在光电耦合器输入端加电信号使发光源发光,光的强度取决于激励电流的大小,此光照射到封装在一起的受光器上后,因光电效应而产生了光电流,由受光器输出端引出,这样就实现了电一光一电的转换。

  光电耦合器*特性

  以光敏三极管为例:

  1、共模抑制比很高

  在光电耦合器内部,由于发光管和受光器之间的耦合电容很小(2pF以内)所以共模输入电压通过极间耦合电容对输出电流的影响很小,因而共模抑制比很高。

  2、输出特性

  光电耦合器的输出特性是指在一定的发光电流IF下,光敏管所加偏置电压VCE与输出电流IC之间的关系,当IF=0时,发光二极管不发光,此时的光敏晶体管集电极输出电流称为暗电流,一般很小。当IF>0时,在一定的IF作用下,所对应的IC基本上与VCE无关。IC与IF之间的变化成线性关系,用半导体管特性图示仪测出的光电耦合器的输出特性与普通晶体三极管输出特性相似。其测试连线如图2,图中D、C、E三根线分别对应B、C、E极,接在仪器插座上。

  3、光电耦合器可作为线性耦合器使用。

  在发光二极管上提供一个偏置电流,再把信号电压通过电阻耦合到发光二极管上,这样光电晶体管接收到的是在偏置电流上增、减变化的光信号,其输出电流将随输入的信号电压作线性变化。光电耦合器也可工作于开关状态,传输脉冲信号。在传输脉冲信号时,输入信号和输出信号之间存在一定的延迟时间,不同结构的光电耦合器输入、输出延迟时间相差很大。

  光电耦合器*分类

  由于光电耦合器的品种和类型非常多,在光电子DATA手册中,其型号超过上千种,通常可以按以下方法进行分类:

  按光路径分

  可分为外光路光电耦合器(又称光电断续检测器)和内光路光电耦合器。外光路光电耦合器又分为透过型和反射型光电耦合器。

  按输出形式分

  a、光敏器件输出型,其中包括光敏二极管输出型,光敏三极管输出型,光电池输出型,光可控硅输出型等。

  b、NPN三极管输出型,其中包括交流输入型,直流输入型,互补输出型等。

  c、达林顿三极管输出型,其中包括交流输入型,直流输入型。

  d、逻辑门电路输出型,其中包括门电路输出型,施密特触发输出型,三态门电路输出型等。

  e、低导通输出型(输出低电平毫伏数量级)。

  f、光开关输出型(导通电阻小余10Ω)。

  g、功率输出型(IGBT/MOSFET等输出)。

  按封装形式分

  可分为同轴型,双列直插型,TO封装型,扁平封装型,贴片封装型,以及光纤传输型等。

  按传输信号分

  可分为数字型光电耦合器(OC门输出型,图腾柱输出型及三态门电路输出型等)和线性光电耦合器(可分为低漂移型,高线性型,宽带型,单电源型,双电源型等)。

  按速度分

  可分为低速光电耦合器(光敏三极管、光电池等输出型)和高速光电耦合器(光敏二极管带信号处理电路或者光敏集成电路输出型)。

  按通道分

  可分为单通道,双通道和多通道光电耦合器。

  按隔离特性分

  可分为普通隔离光电耦合器(一般光学胶灌封低于5000V,空封低于2000V)和高压隔离光电耦合器(可分为10kV,20kV,30kV等)。

  按工作电压分

  可分为低电源电压型光电耦合器(一般5~15V)和高电源电压型光电耦合器(一般大于30V)。

  光电耦合器*优点

  光耦合器的主要优点是:信号单向传输,输入端与输出端完全实现了电气隔离,输出信号对输入端无影响,抗干扰能力强,工作稳定,无触点,使用寿命长,传输 效率高。光耦合器是70年代发展起来产新型器件,现已广泛用于电气绝缘、电平转换、级间耦合、驱动电路、开关电路、斩波器、多谐振荡器、信号隔离、级间隔 离 、脉冲放大电路、数字仪表、远距离信号传输、脉冲放大、固态继电器(SSR)、仪器仪表、通信设备及微机接口中。在单片开关电源中,利用线性光耦合器可构 成光耦反馈电路,通过调节控制端电流来改变占空比,达到精密稳压目的。

  (1) 能够有效抑制接地回路的噪声,消除地干扰,使信号现场与主控制端在电气上完 全隔离,避免了主控制系统受到意外损坏。

  (2) 可以在不同电位和不同阻抗之间传输电信号,且对信号具有放大和整形等功能, 使得实际电路设计大为简化。

  (3) 开关速度快,高速光电耦合器的响应速度到达ns数量级,极大的拓展了光电耦合 器在数字信号处理中的应用。

  (4) 体积小,器件多采用双列直插封装,具有单通道、双通道以及多达八通道等多种 结构,使用十分方便。

  (5) 可替代变压器隔离,不会因触点跳动而产生尖峰噪声,且抗震动和抗冲击能力强。

  (6) 高线性型光电耦合器除了用于电源监测等,还被用于医用设备,能有效地保护病 人的人生**。

  光电耦合器*抗干扰技术

  光电耦合器之所以在传输信号的同时能有效地抑制尖脉冲和各种噪声干扰,使通道上的信号噪声比大为提高,主要有以下几方面的原因: (1)光电耦合器的输入阻抗很小,只有几百欧姆,而干扰源的阻抗较大,通常为105~106Ω。据分压原理可知,即使干扰电压的幅度较大,但馈送到光电耦合器输入端的噪声电压会很小,只能形成很微弱的电流,由于没有足够的能量而不能使二极管发光,从而被抑制掉了。

  (2)光电耦合器的输入回路与输出回路之间没有电气联系,也没有共地;之间的分布电容极小,而绝缘电阻又很大,因此回路一边的各种干扰噪声都很难通过光电耦合器馈送到另一边去,避免了共阻抗耦合的干扰信号的产生。

  (3)光电耦合器可起到很好的**保障作用,即使当外部设备出现故障,甚至输入信号线短接时,也不会损坏仪表。因为光耦合器件的输入回路和输出回路之间可以承受几千伏的高压。

  (4)光电耦合器的响应速度极快,其响应延迟时间只有10μs左右,适于对响应速度要求很高的场合。

  光电耦合器*作用

  (1) 在逻辑电路上的应用 光电耦合器可以构成各种逻辑电路,由于光电耦合器的抗干扰性能和隔离性能比 晶体管好,因此,由它构成的逻辑电路更 可靠。

  (2) 作为固体开关应用 在开关电路中,往往要求控制电路和开关之间要有很好的电隔离,对于一般的电 子开关来说是很难做到的,但用光电耦合 器却很容易实现。

  (3) 在触发电路上的应用 将光电耦合器用于双稳态输出电路,由于可以把发光二极管分别串入两管发射极 回路,可有效地解决输出与负载隔离地问 题。

  (4) 在脉冲放大电路中的应用 光电耦合器应用于数字电路,可以将脉冲信号进行放大。

  (5) 在线性电路上的应用 线性光电耦合器应用于线性电路中,具有较高地线性度以及优良地电隔离性能。

  (6) 特殊场合的应用 光电耦合器还可应用于高压控制,取代变压器,代替触点继电器以及用于A/D电路 等多种场合。

  光电耦合器*应用

  1 微机接口电路中的光电隔离

  微机有多个输入端口,接收来自远处现场设备传来的状态信号,微机对这些信号处理后,输出各种控制信号去执行相应的操作。在现场环境较恶劣时,会存在较大的噪声干扰,若这些干扰随输入信号一起进入微机系统,会使控制准确性降低,产生误动作。因而,可在微机的输入和输出端,用光耦作接口,对信号及噪声进行隔离。典型的光电耦合电路如图2所示。

  该电路主要应用在"A/D转换器"的数字信号输出,及由CPU发出的对前向通道的控制信号与模拟电路的接口处,从而实现在不同系统间信号通路相联的同时,在电气通路上相互隔离,并在此基础上实现将模拟电路和数宇电路相互隔离,起到抑制交叉串扰的作用。

  对于线性模拟电路通道,要求光电耦合器必须具有能够进行线性变换和传输的特性,或选择对管,采用互补电路以提高线性度,或用V/P变换后再用数字光耦进行隔离。

  2 功率驱动电路中的光电隔离

  在微机控制系统中,大量应用的是开关量的控制,这些开关量一般经过微机的I/O输出,而I/O的驱动能力有限,一般不足以驱动一些点磁执行器件,需加接驱动接口电路,为避免微机受到干扰,须采取隔离措施。如晶闸管所在的主电路一般是交流强电回路,电压较高,电流较大,不易与微机直接相连,可应用光耦合器将微机控制信号与晶闸管触发电路进行隔离电路。

  在马达控制电路中,也可采用光耦来把控制电路和马达高压电路隔离开。马达靠MOSFET或IGBT功率管提供驱动电流,功率管的开关控制信号和大功率管之间需隔离放大级。在光耦隔离级一放大器级一大功率管的连接形式中,要求光耦具有高输出电压、高速和高共模抑制。

  3 远距离的隔离传送

  在计算机应用系统中,由于测控系统与被测和被控设备之间不可避免地要进行长线传输,信号在传输过程中很易受到干扰,导致传输信号发生畸变或失真,另外,在通过较长电缆连接的相距较远的设备之间,常因设备间的地线电位差,导致地环路电流,对电路形成差模干扰电压。为确保长线传输的可靠性,可采用光电耦合隔离措施,将2个电路的电气连接隔开,切断可能形成的环路,使他们相互独立,提高电路系统的抗干扰性能。若传输线较长,现场干扰严重,可通过两级光电耦合器将长线完全"浮置"起来,

  长线的"浮置"去掉了长线两端间的公共地线,不但有效消除了各电路的电流经公共地线时所产生噪声电压形成相互窜扰,而且也有效地解决了长线驱动和阻抗匹配问题;同时,受控设备短路时,还能保护系统不受损害。

  4 过零检测电路中的光电隔离

  零交叉,即过零检测,指交流电压过零点被自动检测进而产生驱动信号,使电子开关在此时刻开始开通。现代的零交叉技术已与光电耦合技术相结合。有一种为一种单片机数控交流调压器中可使用的过零检测电路。

  220V交流电压经电阻R1限流后直接加到2个反向并联的光电耦合器GD1,GD2的输入端。在交流电源的正负半周,GD1和GD2分别导通,U0输出低电平,在交流电源正弦波过零的瞬间,GD1和GD2均不导通,U0输出高电平。该脉冲信号经非门整形后作为单片机的中断请求信号和可控硅的过零同步信号。

  光电耦合器*选型指南

  在设计光耦光电隔离电路时必须正确选择光耦合器的型号及参数,选取原则如下:

  (1)由于光电耦合器为信号单向传输器件,而电路中数据的传输是双向的,电路板的尺寸要求一定,结合电路设计的实际要求,就要选择单芯片集成多路光耦的器件;

  (2)光耦合器的电流传输比(CTR)的允许范围是不小于500%。因为当CTR<500%时,光耦中的LED就需要较大的工作电流(>5.0 mA),才能保证信号在长线传输中不发生错误,这会增大光耦的功耗;

  (3)光电耦合器的传输速度也是选取光耦必须遵循的原则之一,光耦开关速度过慢,无法对输入电平做出正确反应,会影响电路的正常工作。

  (4)推荐采用线性光耦。其特点是CTR值能够在一定范围内做线性调整。设计中由于电路输入输出均是一种高低电平信号,故此,电路工作在非线性状态。而在线性应用中,因为信号不失真的传输,所以,应根据动态工作的要求,设置合适的静态工作点,使电路工作在线性状态。 通常情况下,单芯片集成多路光耦的器件速度都比较慢,而速度快的器件大多都是单路的,大量的隔离器件需要占用很大布板面积,也使得设计的成本大大增加。

  光电耦合器*使用注意事项

  (1) 在光电耦合器的输入部分和输出部分必须分别采用独立的电源,若两端共用一个电源,则光电耦合器的隔离作用将失去意义。

  (2) 当用光电耦合起来隔离输入输出通道室,必须对所有的信号(包括数字量信号、控制量信号、状态信号)全部隔离,使得被隔离的两边没有任何电气上的联系,否则这种隔离是没有意义的。