信号隔离知识大全

分享到:
点击量: 209388

信号隔离概述

  信号隔离使数字或模拟信号在发送时不存在穿越发送和接收端之间屏障的电流连接。这允许发送和接收端外的地或基准电平之差值可以高达几千伏,并且防止了可能损害信号的不同地电位之间的环路电流。信号地的噪声可使信号受损。隔离可将信号分离到一个干净的信号子系统地。在另一种应用中,基准电平之间的电连接可产生一个对于操作人员或病人不**的电流通路。信号的性质可以为电路设计人员指明系统可考虑的那些正确的IC。

  **类隔离器件依赖于无发送器和接收器来跨越隔离屏障。这种器件曾用于数字信号,但线性化问题迫使模拟信号隔离采用变压器,用调制载波使模拟信号跨越这个屏障。变压器怎么说总是难弄的,而且通常不可能制成IC,所以想出了用电容器电路来耦合调制信号以跨越屏障。作用在隔离屏障上的高转换率瞬态电压可做为单电容屏障器件的信号,所以已开发出双电容差分电路以使误差*小。现在电容屏障技术已应用在数字和模拟隔离器件中。

  

信号隔离的分配

  在实际应用中,我们经常遇到将一个变送器信号接入两个或两个以上接收装置的情况,若采用串联环路,则环路中任一处开路都会造成整个环路上的仪表无信号,同时负载电阻之和很容易超过变送器的负载能力,所以一般不采用这种方式。通常采用的方式是:在环路中串接一个电阻,再将负载并联在电阻上以取得电压信号,这种方式虽然能避开开路及负载能力等问题,但却存在以下不足:

  ① 由于电阻本身难以达到高精度,加之存在接线端电阻以及电阻发热引起阻抗升高等因素,所以电压信号较难保证高精度;

  ② 通过串联电阻取电压信号方法是以假定接收设备的输入阻抗无穷大为理想前提的,所以接收设备的输入阻抗必然对信号的测量产生误差,而且,并联设备数目越多,误差越大;

  ③ 导线越长,电阻的电压降越大,对实际电压信号的影响也越大,因此信号传输距离不能太长;

  ④ 由于RFI/EMI(无线射频/电磁干扰)的信号容易与电压信号叠加,所以该连接易受无限射频/电磁干扰。

  解决以上问题的理想方案就是使用信号(隔离)分配器!它精度高、隔离能力强。

  

PCB抄板信号隔离技术

  PCB抄板信号隔离技术是使数字或模拟信号在发送时不存在穿越发送和接收端之间屏障的电流连接。这允许发送和接收端外的地或基准电平之差值可以高达几千伏,并且防止可能损害信号的不同地电位之间的环路电流,主要应用在:

  (1)系统地的噪声比较大,容易使信号受损,隔离可将信号分离到一个干净的信号子系统地、电源中,保证隔离部分信号的可靠性,达到系统设计要求。

  (2)系统电压差非常大。比如在强电电路中,我们通常是通过隔离,将工作电压转化到IC允许的工作范围之内。

  (3)基准电平之间的电连接可产生一个对于操作人员不**的电流通路。通过隔离将电流控制在**范围之内。

  在隔离技术中,设计者根据被隔离信号种类的不同和隔离要求,来选择不同隔离器件是关键:

  (1)**类隔离器件依赖于光发送器和接收器来跨越隔离屏障。主要有光耦合器(图4-18)和隔离收发器IC。通过光来隔断系统的电流,电容也避免电气上的干扰。这类器件用于数字信号。

  (2)模拟变压器,通过变压器的电磁感来耦合发送信号和接收信号(图4-19)。变压器比较难制作,参数也很难**控制,而且通常不可能制成IC,所以使用不是很方便。但线性化问题迫使模拟信号隔离采用变压器。

  (3)为了克服变压器使用的不方便,工程师采用调制载波使模拟信号跨越这个屏障。所以想出了用电容器电路来耦合调制信号以跨越屏障。作用在隔离屏障上的高转换率瞬态电压可作为单电容屏障器件的信号,开发出双电容差分电路以使误差*小。现在电容屏障技术已应用在数字和模拟隔离器件中。

  

PCB抄板信号隔离技术的主要应用

  PCB抄板信号隔离技术是使数字或模拟信号在发送时不存在穿越发送和接收端之间屏障的电流连接。这允许发送和接收端外的地或基准电平之差值可以高达几千伏,并且防止可能损害信号的不同地电位之间的环路电流,主要应用在:

  (1)系统地的噪声比较大,容易使信号受损,隔离可将信号分离到一个干净的信号子系统地、电源中,保证隔离部分信号的可靠性,达到系统设计要求。

  (2)系统电压差非常大。比如在强电电路中,我们通常是通过隔离,将工作电压转化到IC允许的工作范围之内。

  (3)基准电平之间的电连接可产生一个对于操作人员不**的电流通路。通过隔离将电流控制在**范围之内。

  在隔离技术中,设计者根据被隔离信号种类的不同和隔离要求,来选择不同隔离器件是关键:

  (1)**类隔离器件依赖于光发送器和接收器来跨越隔离屏障。主要有光耦合器和隔离收发器IC。通过光来隔断系统的电流,电容也避免电气上的干扰。这类器件用于数字信号。

  (2)模拟变压器,通过变压器的电磁感来耦合发送信号和接收信号。变压器比较难制作,参也很难**控制,而且通常不可能制成IC,所以使用不是很方便。但线性化问题迫使模拟信号隔离采用变压器。

  (3)为了克服变压器使用的不方便,工程师采用调制载波使模拟信号跨越这个屏障。所以想出了用电容器电路来耦合调制信号以跨越屏障。作用在隔离屏障上的高转换率瞬态电压可作为单电容屏障器件的信号,开发出双电容差分电路以使误差*小。现在电容屏障技术已应用在数字和模拟隔离器件中。

  

工业过程控制中信号隔离的重要性

  生产过程监视和控制中要用到多种自动化仪表、计算机及相应执行机构,过程中的信号既有微弱到毫伏级的小信号,又有数十伏的大信号,而且还有高达数千伏、数百安培的信号要处理。从频率上讲,有直流低频范围的,也有高频/脉冲尖峰。设备、仪表间互扰成为系统调试中必须要解决的问题。除了电磁屏蔽之外,解决各种设备、仪表的“地”,也即信号参考点的电位差,将成为重要课题。因为不同设备、仪表的信号要互传互送,那就存在信号参考点问题。换句话说,要使信号完整传送,理想化的情况是所有设备、仪表中的信号有一个共同的参考点,也即共有一个“地”。进一步讲,所有设备、仪表的信号的参考点之间电位为“零”。但是在实际环境中,这一点几乎是不可及的,这里面除了各个设备、仪表“地”之间连线电阻产生的电压降之外,尚有各种设备、仪表在不同环境受到干扰不同,以及导线接点经受风吹雨淋,导致接点质量下降等诸多因素。致使各个“地”之间有差别。

  两个现场设备仪表(A,B)向PLC传送信号以及PLC向两台现场设备仪表发出信号。假定传送的均为0-10VDC信号。理想情况,PLC及两个现场设备“地”电位完全相等。传送过程中又没有干扰,这样从PLC输入来看,接收正确。但正如前所述,两个现场设备通常有“地”电位差,举例来讲,A设备“地”与PLC"地"同电位,B设备比它们的“地”电位高0.1V,这样A设备给PLC的信号为0-10V,而B设备给PLC的为0.1V-10.1V,误差就产生了,同时A,B设备的“地”线在PLC汇合联接。将0.1V电压施加在PLC地线条上,有可能损坏PLC局部“地”线,同时在显示错误数据,由此引起的问题在现场调试中屡有出现。一个经典案例可以说明信号隔离的重要性:某大型公司的生产线调试中,使用某厂家手操器。数据采集板有每八个通道,八个通道共用一个12位A/D,经过变换后,由12个光耦实现与主机隔离。它的八个通道输入之间并没有隔离,致使八个通道输入信号每个单独接入采集板均正常,接入两个或多于两个外部信号时,显示数字乱跳,故障无法排除。又如某海巡船测试发动机各点温度,使用K型偶作为传感器,同上述相似,仅测试一点一切正常,但是向主机接入两点或两点以上温度时,显示的温度明显错误。这两种情况在接入隔离器后,均正常。

  隔离器之所以能起到这个作用,就是它具有使输入/输出在电气上完全隔离的特点。换句话讲,输入/输出之间没有共同“地”,外来信号不管是0-10V,或带着+10V干扰的10V-20V经隔离后均为0-10V,也即隔离后新建立的PLC“地”与外部设备、仪表“地”没关系。正是由于这个原因,也实现输入到PLC主机的多个外接设备仪表信号之间隔离,也即它们之间没有“地”的关系。

  上面谈了输入到PLC信号的隔离,同样在PLC向外部信号设备传出信号也有类似现象问题。显然采用隔离器亦能达到解决问题的目的。

  谈到PLC向外部设备、仪表发送信号,有一种情况经常遇到:要求PLC的输出即能给显示仪表,又能传送给变频器一类的设备。欲彻底解决干扰问题,推荐使用隔离式信号分配器。这种隔离器即实现PLC输出信号与外设隔离,同时实现外设之间隔离。

  有时现场仪表在配套时,由于协调不利,产生了如下情况,接收信号设备(例如接收4-20mA)接口连接为两线制方式,也即接收口为一个24V电源与一个250Ω相串联.接口两根线:一个为24V正极,一个为250Ω一端,适于连接现场两线制变送器。假如现场设备为四线制变送器,输出4-20mA。这样进行直接连接将造成电源冲突。解决方法是采用隔离器将现场来的4-20mA接收并隔离,在隔离器的输出部份接入一个标准的两线制变送器,以应对接收设备的接口。

  隔离器要保证输入/输出两个部分隔离,外加工作电源24V在为输入、输出部份供电同时,必须确保在电气上与两个部分隔离。这种输入/输出/外加工作电源之间全部相互隔离的器件常称为三隔离或全隔离器件. 从理论上讲这种供电方式,不管隔离器数量多少,均可用一台24V电源供电,不会产生干扰。

  如果处理标准信号4-20mA,0-10V,0-5V输入及输出4-20mA,0-10V,0-5V信号,且同时需给前级设备供电的情况下,也称输入/输出/电源三端全隔离,我们极力的推荐采用汉为电子有限公司(highway co.ltd)的有源信号隔离放大模块(又称隔离配电器或信号调理器)T62系列,该系列产品具有0.1和0.05级的精度,同时温漂控制在25PPM/℃,隔离耐压强度高达3KV到6KVDC,线性的输出保证了信号在传输过程当中的**,同时提供了内嵌电源的灵活多样选择(输入/输出:5V,12V,24V).

  如果处理4-20mA到4-20mA电流信号的隔离,同时不需要给前级设备配电的同时,这里推荐一种纯无源信号隔离器T60系列。显然省去外接电源,使接线更简捷,且功耗低、温升小、自身热量低、可靠性高。T60的*大特点在于不需要外接电源,它带来了简捷可靠的优点,但也带来了使用上的局限性. T60只能对于4-20mA的电流信号进行的隔离传送,而不能处理电压信号输入,从另一个意义上讲是功率传送,内部的功率损耗必不可少.损耗表现在输入端和输出端电流/电压乘积的差值上。以负载电阻RL=250Ω为例,当输出为20mA时,输出端250Ω上的电压为5.0V,而输入端的两端间电压测试为8.8V.简单计算表明,内部损耗等于20mA×(8.8V-5.0V)=76(mW),也即内部损耗为76毫瓦.从使用者角度来看,假若输出端负载电阻RL等于250Ω,那么从输入端看进去的等效电阻*大值为8.8V/20mA=440(Ω)。换言之,在这种情况下输入的4-20mA电流源必须具有驱动440Ω负载的能力,才能使T60系列无源隔离器在输出端负载电阻RL等于250Ω条件下正常工作。不过,从经验来看大部分现场仪表能满足这些条件.

  从隔离角度看二线制变送器(含压力、温度、流量…),分为隔离式及非隔离式。采用隔离式二线制变送器的主要目的是提高抗干扰能力.

  二线制变送器的隔离有两种方式.一种方式传感器和变送器一体而又必须放置在现场指定地点,对于这种情况一般把隔离器安置在中央控制室机柜中.对现场二线制变送器的电源配送有二种接口形式,要根据现场具体情况来定.

  在隔离端子电路前部安装进口**IC(集成电路)公司的专用电路,实现温度隔离变送,虽然比零件组装式(诸如用廉价OPA)成本高,但在长期性能稳定性、可靠性方面是零件组装无法比拟的。引入**元器件是隔离端子稳定可靠的基本保证,同时专用IC在功能上诸如长线补偿、恒流驱动、线性化性能齐备。