离子探针知识大全

分享到:
点击量: 203840

  离子探针*概述

  离子探针分析仪,即离子探针(Ion Probe Analyzer,IPA),又称二次离子质谱(Secondary Ion Mass Spectrum,SIMS),是利用电子光学方法把惰性气体等初级离子加速并聚焦成细小的高能离子束轰击样品表面,使之激发和溅射二次离子,经过加速和质谱分析,分析区域可降低到1-2μm直径和5nm的深度,正是适合表面成分分析的功能,它是表面分析的典型手段之一。

  离子探针*基本原理

  离子探针的基本原理是用高能负氧离子轰击样品表面,测定被飞溅活化出来并发生电离的原子(即离子)的同位素组成,以获得年龄。为一种近年来得到迅猛发展的新型质谱计,它具有许多其他测年方法所没有的优点:不需要化学处理;具有高的分辨率,可同时获得几组年龄以确定被测对象同位素体系是否封闭,有无铅丢失;可对样品作微区(约20微米)分析而基本不破坏样品,故可获得矿物内部年龄分布的精细结构,这对了解具有复杂历史矿物的形成过程及由此反映的地质演化十分重要;测年对象的时代跨度很大,从不到100百万年到40亿年以上,地球上几乎所有*古老岩石和锆石的准确定年都是由这一方法完成的。所测矿物主要为锆石,近年米独居石、钛铁矿等含U、Th矿物的测年研究受到重视。

  离子探针*应用

  离子探针对金属及非金属材料表面不同深度的元素成份分析,可做全元素分析。应用于半导体材料、冶金建材等部门。

  离子探针*离子探针分析仪

  离子探针主要由三部分组成:一次离子发射系统、质谱仪、二次离子的记录和显示系统。前两者处于压强〈10-7Pa的真空室内。其结构原理如图所示。

  离子探针分析仪

  ① 一次离子发射系统

  一次离子发射系统由离子源(或称离子枪)和透镜组成。离子源是发射一次离子的装置,通常是用几百伏特的电子束轰击气体分子(如惰性气体氦、氖、氩等),使气体分子电离,产生一次离子。在电压作用下,离子从离子枪**出,再经过几个电磁透镜使离子束聚焦,照射在样品表面上激发二次离子。用一个电压约为1KV的引出电极将二次离子引入质谱仪。

  ② 质谱仪

  质谱仪由扇形电场和扇形磁场组成。二次离子首先进入一个扇形电场,称为静电分析器。在电场内,离子沿半径为r的圆形轨道运动,由电场产生的力等于向心力。

  运动轨道半径r等于mv2/eE,与离子的能量成正比。所以扇形电场能使能量相同的离子作相同程度的偏转。由电场偏转后的二次离子再进入扇形磁场(磁分析器)进行**次聚焦。由磁通产生的洛仑兹力等于向心力。

  不同质荷比的离子聚焦在成像面的不同点上。如果C狭缝固定不动,联系改变扇形磁场的强度,便有不同质量的离子通过C狭缝进入探测器。B狭缝称为能量狭缝,改变狭缝的宽度可选择不同能量的二次离子进入磁场。

  ③ 离子探测系统

  离子探测器是二次电子倍增管,内是弯曲的电极,各电极之间施加100-300V的电压,以便逐级加速电子。二次离子通过质谱仪后直接与电子倍增管的初级电极相碰撞,产生二次电子发射。二次电子被**级电极吸引并加速,在其上轰击出更多的二次电子,这样逐级倍增,*后进入记录和观察系统。

  二次离子的记录和观察系统与电子探针相似,可在阴**线管上显示二次离子像,给出某元素的面分布图,或在记录仪上画出所有元素的二次离子质谱图。

  离子探针*仪器测量原理

  离子探针的原理是利用能量为1~20KeV的离子束照射在固体表面上,激发出正、负离子(溅射),利用质谱仪对这些离子进行分析,测量离子的质荷比和强度,从而确定固体表面所含元素的种类和数量。

  被加速的一次离子束照射到固体表面上,打出二次离子和中性粒子等,这个现象称作溅射。溅射过程可以看成是单个入射离子和组成固体的原子之间独立的、一连串的碰撞所产生的。右图说明入射的一次离子与固体表面的碰撞情况。

  入射离子一部分与表面发生弹性或非弹性碰撞后改变运动方向,飞向真空,这叫作一次离子散射(如图中Ⅰ);另外有一部分离子在单次碰撞中将其能量直接交给表面原子,并将表面原子逐出表面,使之以很高能量发射出去,这叫作反弹溅射(如图中Ⅲ);然而在表面上大量发生的是一次离子进入固体表面,并通过一系列的级联碰撞而将其能量消耗在晶格上,*后注入到一定深度(通常为几个原子层)。固体子受到碰撞,一旦获得足够的能量就会离开晶格点阵,并再次与其它原子碰撞,使离开晶格的原子增加,其中一部分影响到表面,当这些受到影响的表面或近表面的原子具有逸出固体表面所需的能量和方向时,它们就按一定的能量分布和角度分布发射出去(如图中Ⅱ)。通常只有2-3个原子层中的原子可以逃逸出来,因此二次离子的发射深度在1nm左右。可见,来自发射区的发射粒子无疑代表着固体近表面区的信息,这正是SISM能进行表面分析的基础。

  一次离子照射到固体表面引起溅射的产物种类很多,其中二次离子只占总溅射产物的很小一部分(约占0.01-1%)。影响溅射产额的因素很多,一般来说,入射离子原子序数愈大,即入射离子愈重,溅射产额愈高;入射离子能量愈大,溅射产额也增高,但当入射离子能量很高时,它射入晶格的深度加大将造成深层原子不能逸出表面,溅射产额反而下降。