请登录 免费注册
分享
  • 微信
  • 新浪微博
  • 人人网
  • QQ空间
  • 开心网
  • 豆瓣
会员服务
进取版 标准版 尊贵版
| 设为首页 | 收藏 | 导航 | 帮助
产品 资讯
请输入产品名称
JUKI贴片机 单极霍尔开关 pcb设备 全方位海绵 无感电容 电源供应 MDD72-16N1B-IXYS二极管
关注微信随身推
首页 电子商城 专题报道 资料中心 成功案例
词多 效果好 就选易搜宝!
杭州清达光电技术有限公司
新增产品 | 公司简介
注册时间:2009-06-24
联系人:
电话:
Email:
首页 公司简介 产品目录 公司新闻 技术文章 资料下载 成功案例 人才招聘 荣誉证书 联系我们

产品目录

特色产品
抄表160160液晶系列
适合ARDUION系统显示屏
特小字符/汉字
特大字符/汉字
电力行业专用
带温度补偿
带汉字库液晶屏
320240系列液晶
PDA液晶
超薄型
图形点阵液晶模块
单色字符液晶模组
OLED模块
OLED显示屏
TFT模块
彩屏解决方案
液晶配套产品
代理产品
日韩台代理产品
香港精电液晶
mono图形液晶显示模块
单色字符LCM模块
OLED
定制液晶
彩色液晶
香港精电液晶
日本单色产品
配件
首页 >>> 技术文章 >

技术文章

OLED显示屏之原理

OLED显示屏工艺之 OLED显示屏之原理

OLED组件系由n型有机材料、p型有机材料、阴极金属及阳极金属所构成。电子(空穴)由阴极(阳极)注入,经过n型(p型)有机材料传导至发光层(一般为n型材料),经由再结合而放光。一般而言,OLED元件制作的玻璃基板上先溅镀ITO作为阳极,再以真空热蒸镀之方式,依序镀上p型和n型有机材料,及低功函数之金属阴极。由于有机材料易与水气或氧气作用,产生暗点(Dark spot)而使元件不发亮。因此此元件于真空镀膜完毕后,必须于无水气及氧气之环境下进行封装工艺。

在阴极金属与阳极ITO之间,目前广为应用的元件结构一般而言可分为5层。如图二所示,从靠近ITO侧依序为:空穴注入层、空穴传输层、发光层、电子传输层、电子注入层。就OLED组件演进历史中,1987年Kodak**发表之OLED组件,系由两层有机材料所构成,分别为空穴传输层及电子传输层。其中空穴传输层为p型之有机材料,其特性为具有较高之空穴迁移率,且其*高占据之分子轨域(Highest occupied molecule orbital,HOMO)与ITO较接近,可使空穴由ITO注入有机层之能障降低。

 

[图二:OLED结构图]

 (OLED显示屏工艺之 OLED显示屏之原理)

    而至于电子传输层,系为n型之有机材料,其特性为具有较高之电子迁移率,当电子由电子传输层至空穴电子传输层介面时,由于电子传输层之*低非占据分子轨域(Lowest unoccupied molecule orbital,LUMO)较空穴传输层之LUMO高出甚多,电子不易跨越此一能障进入空穴传输层,遂被阻挡于此介面。此时空穴由空穴传输层传至介面附近与电子再结合而产生激子(Exciton),而Exciton会以放光及非放光之形式进行能量释放。以一般萤光(Fluorescence)材料系统而言,由选择率(Selection rule)之计算仅得25%之电子空穴对系以放光之形式做再结合,其余75%之能量则以放热之形式散逸。近年来,正积极被开发磷光(Phosphorescence)材料成为新一代的OLED材料[2],此类材料可打破选择率之限制,以提高内部量子效率至接近100%。

    在两层元件中,n型有机材料-即电子传输层-亦同时被当作发光层,其发光波长系由HOMO及LUMO之能量差所决定。然而,好的电子传输层-即电子迁移率高之材料-并不一定为放光效率佳之材料,因此目前一般之做法,系将高萤光度的有机色料,掺杂(Doped)于电子传输层中靠近空穴传输层之部分,又称为发光层[3],其体积比约为1%至3%。掺杂技术开发系用于增强原材料之萤光量子吸收率的重点技术,一般所选择的材料为萤光量子吸收率高的染料(Dye)。由于有机染料之发展源自于1970至1980年代染料雷射,因此材料系统齐全,发光波长可涵盖整个可见光区。在OLED组件中掺杂之有机染料,能带较差,一般而言小于其宿主(Host)之能带,以利exciton由host至掺杂物(Dopant)之能量转移。然而,由于dopant能带较小,而在电性上系扮演陷阱(trap)之角色,因此,掺杂层太厚将会使驱动电压上升;但若太薄,则能量由host转移至dopant之比例将会变差,因此,此层厚度必须*佳化。

    阴极之金属材料,传统上系使用低功函数之金属材料(或合金),如镁合金,以利电子由阴极注入至电子传输层,此外一种普遍之做法,系导入一层电子注入层,其构成为一极薄之低功函数金属卤化物或氧化物,如LiF或Li2O,此可大幅降低阴极与电子传输层之能障[4],降低驱动电压。

    由于空穴传输层材料之HOMO值与ITO仍有差距,此外ITO阳极在长时间操作后,有可能释放出氧气,并破坏有机层产生暗点。故在ITO及空穴传输层之间,插入一空穴注入层,其HOMO值恰介于ITO及空穴传输层之间,有利于空穴注入OLED元件,且其薄膜之特性可阻隔ITO中之氧气进入OLED元件,以延长元件寿命[5]。

上一篇:现在的TFT-LCD相比OLED显示屏具有的优势
下一篇:OLED显示屏的工艺介绍与应用
              
若网站内容侵犯到您的权益,请通过网站上的联系方式及时联系我们修改或删除