光伏逆变器的设计方案

分享到:
点击量: 194417

  随着我国光伏发电应用规模与范围的不断扩大,光电市场对逆变器的需求量迅速增加。与此同时,高质量、低成本的逆变器产品逐渐成为光电系统开发人员和广大用户所关注的问题。逆变器是电力电子技术的一个重要应用方面。电力电子技术是电力、电子、自动控制及半导体等多种技术相互渗透与有机结合的综合技术。因此,逆变器所涉及的知识领域和技术内容十分广泛,本文仅从光伏发电系统应用的角度,对逆变器的基本工作原理、电路系统的构成作一简要介绍。近年来,随着“小家电”产品的日益增多,愈来愈多的人在使用可充电电池,许多家庭都备有小型蓄电池充电器。充电器的核心部件是整流器,它的功能是将50周波的交流电整流成为直流电。逆变器与整流器恰好相反,它的功能是将直流电转换为交流电。这种对应于整流的逆向过程,称之为“逆变”。太阳电池在阳光照射下产生直流电,然而以直流电形式供电的系统有很大的局限性。例如:日光灯、电视机、电冰箱、电风扇等均不能直接用直流电源供电,绝大多数动力机械也是如此。此外,当供电系统需要升高电压或降低电压时,交流系统只需加一个变压器即可,而在直流系统中升降压技术与装置就要复杂得多了。因此, 除特殊用户外, 在光伏发电系统中都需要配备逆变器。逆变器还具有自动调压或手动调压功能,可改善光伏发电系统的供电质量。综上所述,逆变器已成为光伏发电系统中不可缺少的重要配套设备。

  光伏逆变器的设计原则和准备工作

  光伏逆变器由电阻、电容、继电器、接插件、半导体器件及集成电路等元器件组成的。系统的可靠性除取决于这些电子元器件的固有可靠性外,还与设计时元器件能否合理选用有关。

  元器件的选用要遵循下述原则:

  1)在元器件型号、规格众多的情况下,应根据产品要实现的功能要求及环境条件,选用相应种类、型号规格及质量等级的元器件。

  2)估算元器件使用时的应力情况,确定元器件的极限值,按降额设计技术,选用元器件。

  3)根据产品要求的可靠性等级,选用与其适应的、符合生产许可证审查要求的A,B,C 级元器件。

  4)设计产品时,尽量选用标准元器件,并使品种简化,这是大型电子系统设计的一个重要原则,也是系统总体对部件及线路设计者提出的约束条件。

  5)对非标准的元器件要进行严格的验证,使用时要经过批准手续。

  6)制定元器件选用手册,规范元器件的选用和采购。

  降额设计的依据

  所谓降额设计,就是使元器件运用于比额定值低的应力状态的一种设计技术。为了提高元器件的使用可靠性以及延长产品的寿命,必须有意识地降低施加在器件上的工作应力(如:电、热、机械应力等),降额的条件及降额的量值必须综合确定,以保证电路既能可靠性地工作,又能保持其所需的性能。降额的措施也随元器件类型的不同而有不同的规定,如电阻降额是降低其使用功率与额定功率之比;电容降额是使工作电压低于额定电压;半导体分立器件降额是使功耗低于额定值;接触元件则必须降低张力、扭力、温度和降低其它与特殊应用有关的限制。

  降额的等级分为三个等级,分别称I 级降额、II 级降额和III 级降额。

  I 级降额是*大降额,超过它的更大降额,元器件的可靠性增长有限,而且使设计难以实现。I 级降额适用于下述情况:设备的失效将严重危害人员的生命**,可能造成重大的经济损失,导致工作任务的失败,失败后无法维修或维修在经济上不合算等。

  II 级降额指元器件在该范围内降额时,设备的可靠性增长是急剧的,且设备设计较I 级降额易于实现。II 级降额适用于设备的失效会使工作水平降级或需支付不合理的维修费用等场合。

  III 级降额指元器件在该范围内降额时设备的可靠性增长效益*大,且在设备设计上实现困难*小,它适用于设备的失效对工作任务的完成影响小,不危及工作任务的完成或可迅速修复的情况。

  降额应注意的问题

  1)有些元器件的负荷应力是不能降额或者对*大降额有限制的,如电子管的灯丝电压、继电器线包的吸合电流是不能降额的,否则电子管的寿命要降低;

  2)有些元器件降额到一定程度时却得不到预期的降额效果。如薄膜电阻器的功率减额到10%以下时,一般二极管的反向电压减额到*大反向电压的60%以下时,失效率将不再下降;

  3)有些类型电容器的降额可能发生低电平失效,即当电容器两端电压过低时呈现开路失效,也就是说,降额不但不能使失效率下降,反而会使失效率增高。

  降额系数的选择大部分是依靠试验数据和根据元器件使用的环境因子来确定。确定降额系数的方法如下:

  1)数学模型及基本失效率与温度、降额系数之间的关系曲线;

  2)减额曲线给出了为保证元器件可靠工作所选择的降额系数与温度之间的函数关系,当在该减额曲线上工作的半导体结温达到其*高结温时,其失效率仍然较高;

  3)应用减额图,即在减额曲线的下方,通过试验找到一条半导体结温较低的减额曲线;

  4)各种元器件的减额因子参见国家标准。

  图:

  功率开关管驱动电路设计

  IGBT驱动电路的作用是将DSP发出的控制信号加以隔离并放大, 以驱动IGBT等功率器件,并检测电路的电压,防止因电路过压, 短路而造成IGBT损坏,因此驱动电路应满足以下要求:

  (1)为了减少器件的损耗,驱动电路应保证器件充分导通和可靠关断。 驱动电路与IGBT的连线要尽量短。

  (2)保障驱动电路和主回路的电气隔离,由于主回路是高电压, 驱动控制电路是低电压,所以要求驱动信号与主回路无电气耦合。

  (3)具有抗干扰能力,防止开关器件在各种外界干扰下的出现误动作, 影响逆变器总的发电量,保证器件的高可靠的工作。

  (4)具有可靠的保护能力,当主回路或驱动控制电路出现故障时 (如主电路过电流、过电压和驱动电路欠电压), 驱动电路应迅速封锁IGBT的PWM信号,关断器件。 主要的保护功能有:过流检测及保护,欠压检测及保护, 温度检测及保护。

  IGBT驱动电路按功能可分三种类型:单功能型、多功能型、全功能型。

  (1)单功能型驱动电路是由功率缓冲器和光耦构成,如HCLP-3150,

  (2)多功能型的大功率IGBT驱动保护电路,如HCPL-316J、 M57962, VLA500-01等。

  直流母线电容设计

  太阳能组件输出的连续的直流电流,逆变桥采用高频PWM控制,输出的是高频脉冲电流,因此在逆变桥和太阳能组件之间,需要一个直流支撑电容,主要有以下几个作用:

  (1)和太阳能组件一起提供逆变器输入电流;

  (2)降低谐波电流进入电网;

  (3)当机器在紧急情况下急停时,能吸收功率开关器件关断下能量;

  (4)在特殊工况下,能提供瞬时峰值功率;

  (5)当逆变器受到电网瞬时峰值冲击,能保护逆变器。

  母线电容设计选型,要考虑的以下主要因素:电容器的额定电压、电容器容量、电容器的纹波电流、电容器的安装散热方式,电容器的温升和寿命等等

  1)从纹波电流考虑,母线电容中的纹波电流一般取流过IGBT电流的0.65倍。所有电容的纹波电流之各要大于此值。

  2)从能量的转换考虑,一般要使电容组能提供0.5个周期的能量。

  3) 电容的电压要大于电流*高电压

  选择IGBT时需要考虑额定电压和额定电流是否在允许的范围内:

  耐电压要求:IGBT在开通和关断时,会在产生尖峰电压,这个电压要低于器件的耐压值,否则器件将因电压过高击穿而损坏;本逆变器输入电压范围是450VDC到820VDC,关断时的峰值电压为: UCESP (820×1.1+50)×α=1047V

  式中,IGBT的CE两端承受的*高电压是820V,1.1为IGBT电压保护系数,α为**系数,一般取1.1,50为L×(di/dt)引起的尖峰电压。令UCES≥UCESP,并向上靠拢IGBT的实际电压等级,取UCES=1200V。

  **电流:IGBT工作过程中,峰值电流必须小于IGBT的额定电流;

  光伏逆变器的设计要求

  太阳能光伏发电系统目前主要用于无电或缺电的边远地区,作为独立的电源给家用电器及照明设备供电。随着电力紧张、环境污染等问题的日趋严重,与公用电网并网运行的太阳能发电系统已显出越来越大的竞争力。光伏发电的并网运行,将省去独立光伏系统中的贮能环节—蓄电池,从而大大减少了电站的维护。由于蓄电池的寿命较短,省去蓄电池后,发电系统的寿命可与太阳能电池的寿命相当。对于家庭住宅而言,配备光伏发电系统,可缓和白天电力紧张的局面,提高电网功率因素和降低线路损耗。光伏电站的并网发电,*终将取代常规能源发电。光伏发电的并网原理如图1 所示。太阳能电池阵列通过正弦波脉宽调制逆变器向电网传送电能,逆变器馈送给电网的电力由阵列功率和当时当地的日照条件决定。逆变器除了具有直流— 交流转换功能外,还必须具有光伏阵列的*大功率跟踪功能和各种保护功能。图1 所示逆变器为电压型逆变器。目前,电压源型逆变器技术已日趋成熟,所需的硬件也容易购得。本文将对电压型逆变器作进一步研究。

  图1 光伏发电的并网原理

  1 小型光伏并网电站应具备的性能

  光伏电站并网运行,对逆变器提出了较高的要求。这些要求如下:

  ① 要求逆变器输出正弦波电流。光伏电站回馈给公用电网的电力,必须满足电网规定的指标,如逆变器的输出电流不能含有直流分量、逆变器输出电流的高次谐波必须尽量减少、不能对电网造成谐波污染等。

  ②要求逆变器在负载和日照变化幅度较大的情况下均能高效运行。光伏电站的能量来自太阳能,而日照强度随气候而变化,这就要求逆变器能在不同的日照条件下均能高效运行。

  ③要求逆变器能使光伏阵列工作在*大功率点。太阳能电池的输出功率与日照、温度、负载的变化有关,即其输出特性具有非线性特性。这就要逆变器具有*大功率跟踪功能,即不论日照、温度等如何变化,都能通过逆变器的自动调节实现阵列的*佳运行。

  ④要求逆变器具有体积小、可靠性高等特点。对于家用的光伏电站,其逆变器通常安装在室内或壁挂于墙上,因此对其体积、重量均有限制。另外,对整机的可靠性也提出较高的要求。由于太阳能电池的寿命均在20 年以上,因此其配套设备的寿命也必须与其相当。

  ⑤要求在市电断电状况下逆变器在有日照时能够单独供电。

  2 正弦波电压型逆变器的实现

  光伏发电并网运行时的电路原理如图2 所示。Up 为逆变器输出电压,Uu 为电网电压,R为线路电阻,L 为串联电抗器,Iz 则为回馈电网的电流。为保证回馈功率因数为1,回馈电流的相位必须与电网电压的相位一致。以电网电压Uu为参考,则Iz 与Uu 同相位,其矢量图如图3 所示。内阻R 两端的电压UR 与电网电压相位一致,而电抗器两端电压UL 的相位则落后于UR90?.由此可以求得UP 的相位和幅值:

  其中ω为公用电网角频率。实际电路中,Uu 的相位、周期和幅值由电压传感器检测得到。由于在实际系统中R 是很难得到的,因此回馈电流Iz 的相位必须采用电流负反馈来实现,回馈电流Iz 的相位角的参考相位即为公用电网相位。用电流互感器随时检测Iz,确保Iz 与电网电压相位一致,以实现功率因数为1 的回馈发电。

  图2 光伏发电并网运行时的电路原理

  图3 矢量图

  逆变器主电路功率管采用IGBT,容量为50A、600V,型号为2MBI50N-060 。隔离驱动电路采用东芝公司生产的TLP250。逆变器的控制部分由微处理器完成。主控芯片采用INTEL 公司*新推出的逆变或电机驱动专用16 位微处理器87C196MC,该芯片除了具有16 位运算指令外,还具有专用的脉宽调制(PWM)输出口,包括一个10 位A/D 转换器、一个事件处理阵列、两个16 位定时器和一个三相波形发生器。三相波形发生器的每相均能输出两路死区时间可以设定的PWM 信号。

  这就给逆变应用场合提供了很多便利。微处理器主要完成电网、相位实时检测、电流相位反馈控制、光伏阵列*大功率跟踪以及实时正弦波脉宽调制信号发生,其工作过程如下:公用电网的电压和相位经过霍尔电压传感器送给微处理器的A/D 转换器,微处理器将回馈电流的相位与公用电网的电压相位作比较,其误差信号通过PID 调节后送给PWM 脉宽调制器,这就完成了功率因数为1 的电能回馈过程。微处理器完成的另一项主要工作是实现光伏阵列的*大功率输出。光伏阵列的输出电压和电流分别由电压、电流传感器检测并相乘,得到阵列输出功率,然后调节PWM 输出占空比。这个占空比的调节实质上就是调节回馈电压大小,从而实现*大功率寻优。

  从图3 可以得知,当Up 的幅值变化时,回馈电流与电网电压之间的相位角φ也将有一定的变化。由于电流相位已实现了反馈控制,因此自然实现了相位与幅值的解耦控制,使微处理器的处理过程更简便。另外,光伏发电并网运行还必须考虑公用电网停电时的工作状况。常规的光伏发电并网系统,在公用电网停电时则停止逆变器工作。若在白天,其实光伏阵列仍能继续发电。

  其工作原理如下:当公用电网断电时,电网侧相当于短路状态,此时并网运行的逆变器将由于过载而自动保护。当微处理器检测过载时,除封锁SPWM 信号外,还将断开继电器RE,此时若光伏阵列有能量输出,逆变器将在单独运行状态下运行。单独运行时控制相对简单,即为交流电压的负反馈状态,微处理器通过检测逆变器输出电压并与参考电压(通常为220V)比较,然后控制PWM 输出占空比,实现逆变和稳压运行。当然,单独运行的前提是光伏阵列在当时能够提供足够的功率。若负载太大或日照条件较差,则逆变器无法输出足够的功率,光伏阵列的端电压即会下降,从而使输出交流电压降低而进入低压保护状态。当电网恢复供电时,将自动切换至回馈状态。

  采用16 位微处理器和高速IGBT 功率模块实现了中、小容量光伏电站的并网发电。本文描述的光伏发电的并网运行逆变器,不仅具有较高的效率和畸变小的输出电流波形,而且在电网断电的情况下能够单独运行,具有一定的推广应用前景。

  光伏逆变器的设计案例

  步骤1:

  逆变器的种类很多,各自的具体工作原理、工作过程不尽相同,但是*基本的逆变过程是相同的。下面以*基本的逆变电路———单相桥式逆变电路为例具体说明逆变器的“逆变”过程。单相桥式逆变电路如图1(a)所示。输入直流电压为E,R代表逆变器的纯电阻性负载。当开关K1、K3接通时,电流流过K1、R和K3,负载上的电压极性是左正右负;当开关K1、K3断开,K2、K4接通时,电流流过K2、R和K4,负载上的电压极性反向。若两组开关K123、K224以频率f交替切换工作时,负载R上便可得到频率为f的交变电压Ur,其波形如图1(b)所示。该波形为一方波,其周期T=1/f。图1(a)电路中的开关K1、K2、K3、K4,实际是各种半导体开关器件的一种理想模型。逆变器电路中常用的功率开关器件有功率晶体管(GTR)、功率场效应管(POWERMOSFET)、可关断晶闸管(GTO) 及快速晶闸管( SCR) 等。近年来又研制出功耗更低、开关速度更快的绝缘栅双极型晶体管( IGB T) 。

  图1

  步骤2:

  由太阳电池方阵(或蓄电池)送来的直流电进入逆变器主回路,经逆变转换成交流方波,再经滤波器滤波后成为正弦波电压,*后由变压器升压后送至用电负载。逆变器主回路**率开关管的开关过程,是由系统控制单元通过驱动回路进行控制的。逆变器电路各部分的工作状态及工作参量,经由不同功能的传感器变换为可识别的电信号后,通过检测回路将信息送入系统控制单元进行比较、分析与处理。根据判断结果,系统控制单元对逆变器各回路的工况进行调控。例如:通过电压调节回路可调节逆变器的输出电压值。当检测回路送来的是短路信息时,系统控制单元通过保护回路,立即关断逆变器主回路的功率开关管,从而起到保护逆变器的作用。逆变器工作的主要状态信息及故障情况,通过系统控制单元可以送至显示与报警回路。根据逆变器功率大小,功能多少的不同,图2中的系统控制单元,简单的可以是一块组件构成的逻辑电路或专用芯片;复杂的可以是单片微处理器或16位微处理器等等。此外,图2所示的是逆变器典型的电路系统原理,实际的逆变器电路系统可以比图2简单许多,也可较之更复杂。*后要说明的是,一台功能完善、性能良好的逆变器,除具有如图2 所示的全部功能电路外,还要有二次电源。 该电源负责向逆变器所有用电部件、元器件、仪表等,提供不同等级的低压工作用电。

  图2

  步骤3:

  方波逆变器输出的交流电压波形为方波, 如图3(a) 所示。此类逆变器所使用的逆变线路也不完全相同, 但共同的特点是线路比较简单, 使用的功率开关管数量很少。设计功率一般在几十瓦至几百瓦之间。方波逆变器的优点是: 价格便宜, 维修简单。缺点是: 由于方波电压中含有大量高次谐波, 在以变压器为负载的用电器中将产生附加损耗, 对收音机和某些通讯设备也有干扰。此外, 这类逆变器中有的调压范围不够宽, 有的保护功能不够完善, 噪声比较大。

  图3

  步骤4:

  此类逆变器输出的交流电压波形为阶梯波, 如图3 ( b) 所示。逆变器实现阶梯波输出也有多种不同的线路, 输出波形的阶梯数目也不一样。阶梯波逆变器的优点是: 输出波形比方波有明显改善, 高次谐波含量减少, 当阶梯达到17 个以上对输出波形可实现准正弦波。当采用无变压器输出时, 整机效率很高。缺点是: 阶梯波叠加线路使用的功率开关管较多, 其中有些线路形式还要求有多组直流电源输入。这给太阳电池方阵的分组与接线和蓄电池的均衡充电均带来麻烦。此外, 阶梯波电压对收音机和某些通讯设备仍有一些高频干扰。

  步骤5:

  这类逆变器输出的交流电压波形为正弦波, 如图3 (c) 所示。正弦波逆变器的特点是: 综合技术性能好, 功能完善, 但线路复杂。正弦波逆变器的优点是: 输出波形好, 失真度很低, 对收音机及通讯设备无干扰, 噪声也很低。此外, 保护功能齐全, 整机效率高。缺点是: 线路相对复杂, 对维修技术要求高,价格较贵。上述三种类型逆变器的分类, 有利于光电系统开发人员和用户对逆变器进行识别和选型。实际上, 波形相同的逆变器在线路原理, 使用器件及控制方法等等方面仍有很大区别。有关其它分类方法与特点, 读者如有兴趣, 可参阅有关电力电子专业方面的书刊。

  光伏逆变器的设计经验及心得

  太阳能模块产生一个直流电压,太阳能逆变器再把这一直流电能转换为交流电能,然后接入电网。下面是太阳能逆变器设计的经验和心得:

  太阳能逆变器设计其中一个重要趋势是采用更高的功率。现在,峰值发电量超过100kW的太阳能发电厂越来越普遍,而较小规模的发电系统也存在这种趋势:平均功率从5kWp提高到10kWp。

  常见太阳能逆变器拓扑:升压+H-桥

  升压+H-桥拓扑是太阳能逆变器极为常用的拓扑之一,是一种两级非隔离拓扑。其***是升压级,用于把模块的可变输出电压(例如100V–500V)升高到更大的中间电压,后者必须大于实际峰值主线电压(如230Vxsqrt(2),或>325V)。该升压级还有一个重要作用,就是为了实现效率*大化,太阳能模块必须运作产生尽可能大的功率,而太阳能模块的功率曲线可通过输出电流乘以输出电压数值获得。功率特性中有一个*大点,被称为“*大功率点”或MPP,而这**位置会随着模块的类型、温度和日照阴影等因素而变化。

  利用名为“*大功率点跟踪”或MPPT的软件技术,辅以定制化算法,逆变器的输入级便可跟踪这个*大功率点。

  逆变器的**级把恒定的中间电压转换为50Hz的交流电压,再馈入供电主线。这个输出与供电主线的相位及频率同步。这**由于与供电主线连接,故即便在故障状态下也必须达到一定的**标准。除此之外,还有一个与低压指令(LowVoltageDirective)相关的VDE0126-1-1新草案,该提案要求太阳能逆变器在电能质量下降的情况下也应有源支持主供电网,以尽量降低更具普遍性的停电风险。在现有法规限制之下,是可以设计一个在停电时能够实时关断逆变器,以实现自我保护。不过,当太阳能逆变器变得普及,并在总发电量中占有可观的份额时,如果一遇上停电便直接关断连接的太阳能逆变器的话,是可能造成更大规模的主电网停电的,因为这样逆变器便会一个接一个关断,并迅速减少电网中的电能。因此,新的指令草案旨在提高主干配电网的稳定性和电能质量,而代价仅仅是使逆变器的输出级稍微复杂一点。

  太阳能逆变器必须可靠,以尽量减小维护和停机检修的成本。这些逆变器还必须具有高效,以尽量增大发电量。太阳能逆变器设计人员还需付出相当的努力,以尽可能地提高效率。有很多方法能够提高升压逆变器的效率。由于升压逆变器可在连续传导模式或边界传导模式(CCM或BCM)下工作,这就衍生出不同的优化方案。在CCM模式中,损耗的一大主因是升压二极管的反向恢复电流;在这种情况下,一般使用碳化硅二极管或飞兆半导体的Stealth二极管来解决。太阳能逆变器更常采用的是BCM模式,而尽管对这类功率级通常建议选择CCM模式,但采用BCM模式的原因在于BCM模式中二极管的正向电压要低得多。而且,BCM模式也具有高得多的EMI滤波器和升压电感纹波电流。这时,良好的高频电感设计是一解决方案。

  采用两个交错式升压级来取代一个升压级乃一种新方法。这样一来,流经每个电感和每个开关的电流便能够减半。另外,采用交错式技术,**上的纹波电流可抵偿另**的纹波电流,因而可在很宽工作输入范围上去除输入纹波电流。如FAN9612交错式BCMPFC一类的控制完全能够轻松满足太阳能升压级的要求。

  逆变器中的升压开关有两个选择:IGBT或MOSFET。对于需要600V以上额定开关电压的输入级,常常会采用1200VIGBT快速开关,如FGL40N120AND。对于额定电压只需600V/650V的输入级,则选用MOSFET。

  输出H-桥级的设计人员一直以来都采用600V/650VMOSFET,但因为新的草案规范要求输出级以四象限工作,于是在这一领域重新点燃了人们对IGBT的兴趣。MOSFET虽然内置有体二极管,但相比IGBT中采用的组合封装二极管,其开关性能很差。新型的场截止IGBT能够以10V/ns的速度转换电压,较之以往的旧式产品导通损耗大大改善。这种集成式二极管具有出色的软恢复性能,有助于降低500A/us以上的高di/dt造成的EMI。对于16kHz-25kHz开关,建议采用IGBT,例如飞兆半导体的FGH60N60UFD。

  太阳能逆变器的发展趋势:交错式BCM升压+三电平逆变器

  太阳能逆变器设计的另一个趋势是扩大输入电压范围,这会导致相同功率级下输入电流的减小,或相同输入电流下功率级的提高。输入电压比较高时,需要使用额定电压更高(1200V范围内)的IGBT,从而产生更大的损耗。解决这一问题的一个方法是采用三电平逆变器。

  采用两个串联的电解电容可把高输入电压一分为二,将中间点与零线(neutralline)连接,这时就可以再采用600V开关了。三电平逆变器可在三个电平间进行转换:+Vbus、0V和–Vbus。这方案除了比1200V开关构建的解决方案更有效之外,三电平逆变器还有一个优势,就是输出电感大为减小。

  对于整功率因数,三电平逆变器的功能可解释如下。在正半波Q5始终导通期间,Q6和Q4一直关断。Q3和D3构成一个降压转换器,产生输出正弦波电压。如果只需要整功率因数,Q5和Q6可设计为50Hz开关,采用速度极慢Vce(饱和电压)极低的IGBT,比如FGH30N60LSD。若需要较低的功率因数,Q5和Q6必须工作在开关频率下一小段时间。Q3和Q4的二极管应该是快速软恢复二极管。Q3和Q4可安排为快速恢复MOSFET,比如FGL100N50F,或者是快速IGBT,如FGH60N60SFD。基于上述分析,三电平逆变器拓扑可获得98%以上的效率,因此可能成为5kWp以上功率级非隔离逆变器的主流结构。