机器视觉知识大全

分享到:
点击量: 199255

  机器视觉*概述

  机器视觉,简单的讲,可以理解为给机器加装上视觉装置,或者是加装有视觉装置的机器。给机器加装视觉装置的目的,是为了使机器具有类似于人类的视觉功能,从而提高机器的自动化和智能化程度。由于机器视觉涉及到多个学科和多种技术(包括数字图像处理技术、机械工程技术、控制技术、电光源照明技术,光学成像技术、传感器技术、模拟与数字视频技术、计算机软硬件技术等),所以给出一个**的定义是很困难的,而且在这个问题上见仁见智,各人认识也不尽相同

  机器视觉*研究范畴

  从应用的层面看,机器视觉研究包括工件的自动检测与识别、产品质量的自动检测、食品的自动分类、智能车的自主导航与辅助驾驶、签字的自动验证、目标跟踪与制导、交通流的监测、关键地域的保安监视等等。从处理过程看,机器视觉分为低层视觉和高层视觉两阶段。低层视觉包括边缘检测、特征提取、图像分割等,高层视觉包括特征匹配、三维建模、形状分析与识别、景物分析与理解等。从方法层面看,有被动视觉与主动视觉之分,又有基于特征的方法与基于模型的方法之分。从总体上来看,也称作计算机视觉。可以说,计算机视觉侧重于学术研究方面,而机器视觉则侧重于应用方面。[2] 机器视觉作为一门工程学科,正如其它工程学科一样,是建立在对基本过程的科学理解之上的。机器视觉系统的设计依赖于具体的问题,必须考虑一系列诸如噪声、照明、遮掩、背景等复杂因素,折中地处理信噪比、分辨率、精度、计算量等关键问题。

  机器视觉*系统组成

  一个典型的机器视觉系统包括以下五大块:

  1. 照明

  照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到*佳效果。光源可分为可见光和不可见光。常用的几种可见光源是 白帜灯 、 日光灯 、 水银灯 和 钠光灯 。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。

  2. 镜头

  FOV(FieLDOfVision)=所需分辨率*亚象素*相机尺寸/PRTM(零件测量公差比) 镜头选择应注意:①焦距②目标高度③影像高度④放大倍数⑤影像至目标的距离⑥中心点/节点⑦畸变

  3. 相机

  按照不同标准可分为:标准分辨率 数字相机 和 模拟相机 等。要根据不同的实际应用场合选不同的相机和高分辨率相机:线扫描CCD和面阵CCD;单色相机和彩色相机。

  4. 图像采集卡

  图像采集卡只是完整的机器视觉系统的一个部件,但是它扮演一个非常重要的角***像采集卡直接决定了摄像头的接口:黑白、彩色、模拟、数字等等。 比较典型的是 PCI 或 AGP 兼容的捕获卡,可以将图像迅速地传送到计算机存储器进行处理。有些采集卡有内置的多路开关。例如,可以连接8个不同的摄像机,然后告诉采集卡采用那一个相机抓拍到的信息。有些采集卡有内置的数字输入以触发采集卡进行捕捉,当采集卡抓拍图像时数字输出口就触发闸门。

  5.视觉处理器

  视觉处理器集采集卡与处理器于一体。以往计算机速度较慢时,采用视觉处理器加快视觉处理任务。现在由于采集卡可以快速传输图像到存储器,而且计算机也快多了,所以现在视觉处理器用的较少了。

  机器视觉*工作原理

  机器视觉检测系统采用照相机将被检测的目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号,图像处理系统对这些信号进行各种运算来抽取目标的特征,如面积、数量、位置、长度,再根据预设的允许度和其他条件输出结果,包括尺寸、角度、个数、合格/不合格、有/无等,实现自动识别功能。机器视觉被称为 自动化 的眼睛,在 国民经济 、 科学研究 及 国防建设 等领域都有着广泛的应用。

  机器视觉*优越性

  1. **可靠:视觉的*大优点是与被观测的对象无接触,因此对观测与被观测者都不会产生任何损伤,十分**可靠,这是其他感觉方式无法比拟的。另外,人无法长时间地观察对象,机器视觉则不知疲劳,始终如一地观测,所以机器视觉可以广泛地用于长时间恶劣的工作环境。

  2. 视觉范围广:理论上,人眼观察不到的范围,机器视觉也可以观察,例如红外线、微波、超声波等人类就观察不到,而机器视觉则可以利用这方面的敏感器件形成 红外线 、 微波 、 超声波 等图象。因此可以说是扩展了人类的视觉范围。

  3. 对象选择范围广:视觉方式所能检测的对象十分广泛,可以说是对对象不加选择。在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉。

  4. 生产效率高:机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成。尤其是在大批量工业生产过程中,用人工视觉检查产品质量效率低且 精度 不高,用机器视觉检测方法可以大大提高 生产效率 和生产的自动化程度,易于实现 信息集成 。

  机器视觉*光源选型

  在机器视觉系统中,获得一张高质量的可处理的图像是至关重要。系统之所以成功,首先要保证图像质量好,特征明显,。一个机器视觉项目之所以失败,大部分情况是由于图像质量不好,特征不明显引起的。要保证好的图像,必须要选择一个合适的光源。

  光源选型基本要素:

  对比度:对比度对机器视觉来说非常重要。机器视觉应用的照明的*重要的任务就是使需要被观察的特征与需要被忽略的图像特征之间产生*大的对比度,从而易于特征的区分。对比度定义为在特征与其周围的区域之间有足够的灰度量区别。好的照明应该能够保证需要检测的特征突出于其他背景。

  亮度:当选择两种光源的时候,*佳的选择是选择更亮的那个。当光源不够亮时,可能有三种不好的情况会出现。**,相机的信噪比不够;由于光源的亮度不够,图像的对比度必然不够,在图像上出现噪声的可能性也随即增大。其次,光源的亮度不够,必然要加大光圈,从而减小了景深。另外,当光源的亮度不够的时候,自然光等随机光对系统的影响会*大。

  鲁棒性:另一个测试好光源的方法是看光源是否对部件的位置敏感度*小。当光源放置在摄像头视野的不同区域或不同角度时,结果图像应该不会随之变化。方向性很强的光源,增大了对高亮区域的镜面反射发生的可能性,这不利于后面的特征提取。

  好的光源需要能够使你需要寻找的特征非常明显,除了是摄像头能够拍摄到部件外,好的光源应该能够产生*大的对比度、亮度足够且对部件的位置变化不敏感。光源选择好了,剩下来的工作就容易多了。具体的光源选取方法还在于试验的实践经验。

  机器视觉*检测方法

  随着制造业的不断发展,先进制造技术的研究和应用越来越广泛。先进制造 技术以及自动化制造系统和先进生产模式的推广应用都要求先进的检测手段与之相适应。

  将机器视觉应用到制造业的检测领域中,用机器视觉系统确定产品相对于一 组标准要求的偏差的过程通常称为机器视觉检测[1]。它特指机器视觉在工业检测方面的应用,是机器视觉应用和研究领域中的一个重要分支。

  机器视觉检测与传统的人工检测相比效率更高,检测结果更加准确可靠。由 于机器视觉检测不会受到操作者的疲劳度、责任心和经验等因素的影响,在一些 不适合人工作业的危险场合,人工视觉难以满足要求的场合和带有高度重复性、智能性并且靠人的眼睛无法连续稳定地进行产品检测的场合,机器视觉可以发挥 它自身的优势来高效、高质量的完成检测任务。

  机器视觉是适合现代制造技术发展的一种检测方式。首先,机器视觉可以实现非接触在线检测,完成对生产线上的零件进行100%的检测,满足自动化制造系统中的工序间检测和过程检测的要求;其次,机器视觉检测是通过计算机或者数字信号处理器中的程序对图像信息进行处理而得到的测量结果,因此机器视觉检测具有一定的智能和柔性,适于现代企业的柔性生产方式;再次,只要选用足够高精度的镜头和图像传感器,机器视觉检测技术可以达到较高的检测精度;*后,机器视觉易于实现信息的集成和管理,为实现计算机集成制造技术提供必要的支持。

  机器视觉检测是与先进制造工艺与现代制造生产模式相适应的智能化、自动化、柔性的检测手段。在国外己经将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。在中国,这种应用也在逐渐被认知,对于机器视觉的需求将越来越广泛。

  机器视觉*应用领域

  机器视觉的应用主要有检测和 机器人视觉 两个方面:

  1. 检测:又可分为高精度定量检测(例如显微照片的细胞分类、机械零部件的尺寸和位置测量)和不用量器的定性或半定量检测(例如产品的外观检查、装配线上的零部件识别定位、缺陷性检测与装配完全性检测)。

  2. 机器人视觉:用于指引机器人在大范围内的操作和行动,如从料斗送出的杂乱工件堆中拣取工件并按一定的方位放在传输带或其他设备上(即料斗拣取问题)。至于小范围内的操作和行动,还需要借助于触觉传感技术。

  机器视觉技术正广泛地应用于各个方面,从医学影像到遥感图像,从工业检测到文件处理,从毫微米技术到多媒体数据库,不一而足。可以说需要人类视觉的场合几乎都需要机器视觉。

  (1)在工业检测中的应用 许多领域像冶金、化工、建材、**保卫、工件检测等工业生产过程中,这些工业对象复杂,过程涉及参数众多,并有显著的非线性、骤变性、离散性、分布性和不确定性。尤其是在周围环境极其恶劣(例如高温环境和不确定对象,其形状参数难以用普通的测量手段进行测量)的情况下,对这类系统要想建立确定的模型是十分困难的。因此,用常规控制技术难以实现对象的计算机实时控制。

  对于这类复杂对象的自动控制,所遇到的*大困难是检测问题,而大多数场合,可通过机器视觉来实现。

  机器视觉系统可用于工业领域的很多方面,如零件检验与尺寸测量、零件的缺陷检查、零件装配、机器人的引导和零件的识别等。应用图像处理及机器视觉检测技术*多的部门是电子工业,其次是汽车工业、木材工业、纺织工业、食品加工工业、包装工业及航空工业等等,已取得的应用成果有:a)产品形状和表面缺陷检查、b)产品非破坏性检查、c)机器人、d)产品分类等。

  (2)机器视觉在农业中的应用

  随着图像处理技术的专业化、计算机硬件成本的下降以及运行速度的提高,在农产品品质自动检测和分级领域应用机器视觉系统已变得越来越具有吸引力。农产品在其生产过程中由于受到人为和自然等复杂因素的影响,产品品质差异很大,如形状、大小、色泽等都是变化的,很难做到整齐划一,故在农产品品质检测与分析时,要有足够的应变能力来适应情况的变化。机器视觉技术在农产品品质检测上的应用正是满足了这些应变的要求。农产品的尺寸与面积、形状和颜色是农产品品质的重要特征,利用机器视觉进行检测不仅可以排除主观因素干扰,而且还能对这些指标进行定量描述,具有人工检测所无法比拟的优越性。

  (3) 在医学中的应用

  在医学领域,机器视觉用于辅助医生进行医学影像的分析,主要利用数字图像处理技术、信息融合技术对X射线**图、核磁共振图像、CT图像进行适当叠加,然后进行综合分析;还有对其它医学影像数据进行统计和分析,如利用数字图像的边缘提取与图像分割技术,自动完成细胞个数的计数或统计,这样不仅节省了人力,而且大大提高准确率和效率。

  (4)机器视觉在机器人导航及视觉伺服系统的应用

  赋予机器人视觉是机器人研究的重点之一,其目的是要通过图像定位和图像理解向机器人运动控制系统反馈目标或自身的状态与位置信息。

  (5)其它方面

  在闭路电视监控系统中,机器视觉技术被用于增强图像质量,捕捉突发事件,监控复杂场景,鉴别身份,跟踪可疑目标等,它能大幅度地提高监控效率,减少危险事件发生的概率。在交通管理系统中,机器视觉技术被用于车辆识别、调度,向交通管理与指挥系统提供相关信息。在卫星遥感系统中,机器视觉技术被用于分析各种遥感图像,进行环境监测、地理测量,根据地形、地貌的图像和图形特征,对地面目标进行自动识别、理解和分类等。

  机器视觉*应用实例

  1. 基于机器视觉的仪表板总成智能集成测试系统 EQ140-II汽车仪表板总成是我国某汽车公司生产的仪表产品,仪表板上安装有速度 里程表 、水温表、汽油表、电流表、信号报警灯等,其生产批量大,出厂前需要进行一次质量终检。检测项目包括:检测速度表等五个仪表指针的指示 误差 ;检测24个信号报警灯和若干照明9灯是否损坏或漏装。一般采用人工目测方法检查,误差大,可靠性差,不能满足自动化生产的需要。基于机器视觉的智能集成测试系统,改变了这种现状,实现了对仪表板总成智能化、全自动、高精度、快速质量检测,克服了人工检测所造成的各种误差,大大提高了检测效率。

  整个系统分为四个部分:为仪表板提供模拟信号源的集成化多路标准信号源、具有图像信息反馈定位的双坐标CNC系统、摄像机图像获取系统和主从机平行处理系统。

  2. 金属板表面自动控伤系统 金属板如大型电力 变压器 线圈扁平线收音机朦胧皮等的表面质量都有很高的要求,但原始的采用人工目视或用百分表加控针的检测方法不仅易受主观因素的影响,而且可能会绘被测表面带来新的划伤。金属板表面自动探伤系统利用机器视觉技术对金属表面缺陷进行自动检查,在生产过程中高速、准确地进行检测,同时由于采用非接角式测量,避免了产生新划伤的可能。其工作原理图如图8-6所示;在此系统中,采用激光器作为光源,通过针孔滤波器滤除激光束周围的杂散光,扩束镜和准直镜使激光束变为平行光并以45度的入射角均匀照明被检查的金属板表面。金属板放在检验台上。检验台可在X、Y、Z三个方向上移动,摄像机采用TCD142D型2048线陈CCD,镜头采用普通照相机镜头。CCD接口电路采用单片机系统。主机PC机主要完成图像预处理及缺陷的分类或划痕的深度运算等,并可将检测到的缺陷或划痕图像在 显示器 上显示。CCD接口电路和PC机之间通过RS-232口进行双向通讯,结合异步 A/D转换 方式,构**机交互式的数据采集与处理。

  该系统主要利用线阵CCD的自扫描特性与被检查钢板X方向的移动相结合,取得金属板表面的三维图像信息。

  3. 汽车车身检测系统 英国 ROVER 汽车公司800系列汽车车身轮廓尺寸精度的100%在线检测,是机器视觉系统用于工业检测中的一个较为典型的例子,该系统由62个测量单元组成,每个测量单元包括一台激光器和一个CCD摄像机,用以检测车身外壳上288个测量点。汽车车身置于测量框架下,通过软件校准车身的**位置。

  测量单元的校准将会影响检测精度,因而受到特别重视。每个激光器/摄像机单元均在离线状态下经过校准。同时还有一个在离线状态下用三坐标测量机校准过的校准装置,可对摄像顶进行在线校准。

  检测系统以每40秒检测一个车身的速度,检测三种类型的车身。系统将检测结果与人、从CAD模型中撮出来的合格尺寸相比较,测量精度为±0.1mm。 ROVER的质量检测人员用该系统来判别关键部分的尺寸一致性,如车身整体外型、门、玻璃窗口等。实践证明,该系统是成功的,并将用于ROVER公司其它系统列汽车的车身检测。

  4. 纸币印刷质量检测系统: 该系统利用图像处理技术,通过对纸币生产流水线上的纸币20多项特征(号码、盲文、颜***案等)进行比较分析,检测纸币的质量,替代传统的人眼辨别的方法。

  5. 智能交通管理系统: 通过在交通要道放置 摄像头 ,当有违章车辆(如闯红灯)时,摄像头将车辆的牌照拍摄下来,传输给中央管理系统,系统利用图像处理技术,对拍摄的图片进行分析,提取出车牌号,存储在数据库中,可以供管理人员进行检索。

  6. 金相分析 : 金相图象分析系统能对金属或其它材料的基体组织、杂质含量、组织成分等进行**、客观地分析,为产品质量提供可靠的依据。

  西门子机器视觉系统在医疗机械的应用

  7. 医疗图像分析: 血液细胞自动分类计数、 染色体 分析、 癌症细胞 识别等。

  8. 瓶装啤酒生产流水线检测系统: 可以检测啤酒是否达到标准的容量、 啤酒 标签是否完整

  9. 大型工件 平行度 、 垂直度 测量仪: 采用激光扫描与CCD探测系统的大型工件平行度、垂直度测量仪,它以稳定的准直激光束为测量基线,配以回转轴系,旋转五角标棱镜扫出互相平行或垂直的基准平面,将其与被测大型工件的各面进行比较。在加工或安装大型工件时,可用该认错器测量面间的平行度及垂直度。

  10. 螺纹钢外形轮廓尺寸的探测器件: 以频闪光作为照明光源,利用面陈和线陈CCD作为螺纹钢外形轮廓尺寸的探测器件,实现热轧 螺纹 钢几何参数在线测量的动态检测系统。

  11. 轴承 实时监控: 视觉技术实时监控轴承的负载和温度变化,消除过载和过热的危险。将传统上通过测量滚珠表面保证加工质量和**操作的被动式测量变为主动式监控。

  12. 金属表面的裂纹测量: 用微波作为信号源,根据微波发生器发出不同波涛率的方波,测量金属表面的裂纹,微波的波的频率越高,可测的裂纹越狭小。

  总之,类似的实用系统还有许多,这里就不一一叙述了。

  机器视觉*历史发展

  机器视觉的研究是从20世纪60年代中期美国学者L.R.罗伯兹关于理解多面体组成的积木世界研究开始的。当时运用的预处理、 边缘检测 、 轮廓线 构成、对象建模、匹配等技术,后来一直在机器视觉中应用。罗伯兹在图像分析过程中,采用了自底向上的方法。用边缘检测技术来确定轮廓线,用区域分析技术将图像划分为由灰度相近的像素组成的区域,这些技术统称为图像分割。其目的在于用轮廓线和区域对所分析的图像进行描述,以便同机内存储的模型进行比较匹配。实践表明,只用自底向上的分析太困难,必须同时采用自顶向下,即把目标分为若干子目标的分析方法,运用启发式知识对对象进行预测。这同言语理解中采用的自底向上和自顶向下相结合的方法是一致的。在图像理解研究中,A.古兹曼提出运用启发式知识,表明用符号过程来解释轮廓画的方法不必求助于诸如 *小二乘法 匹配之类的数值计算程序。

  70年代,机器视觉形成几个重要研究分支:①目标制导的图像处理;②图像处理和分析的并行算法;③从二维图像提取三维信息;④序列图像分析和运动参量求值;⑤视觉知识的表示;⑥视觉系统的知识库等。

  机器视觉*市场展望

  由于机器视觉系统可以快速获取大量信息,而且易于自动处理,也易于同设计信息以及加工控制信息集成,因此,在现代自动化生产过程中,人们将机器视觉系统广泛地用于工况监视、成品检验和质量控制等领域。

  但是机器视觉技术比较复杂,*大的困难在于人的视觉机制尚不清楚。人可以用内省法描述对某一问题的解题过程,从而用计算机加以 模拟 。但尽管每一个正常人都是“视觉专家”,却不可能用 内省法 来描述自己的视觉过程。因此建立机器视觉系统是十分困难的任务。 可以预计的是,随着机器视觉技术自身的成熟和发展,它将在现代和未来制造企业中得到越来越广泛的应用。

  机器视觉系统是指通过机器视觉产品(即图像摄取装置,分 CMOS 和CCD 两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。