肖特基二极管(SBD) 知识大全

分享到:
点击量: 227992

  肖特基二极管(SBD) 的简介:



 

  肖特基势垒二极管(肖特基二极管),其名称是为了纪念德国物理学家华特·萧特基(Walter H. Schottky)。肖特基二极管是一种导通电压降较低、允许高速切换的二极管,是利用肖特基势垒特性而产生的电子元件,SBD是肖特基势垒二极管(Schottky Barrier Diode,缩写成SBD)的简称。

  肖特基二极体的导通电压非常低。一般的二极管在电流流过时,会产生约 0.7-1.7 伏特的电压降,不过肖特基二极体的电压降只有 0.15-0.45 伏特,因此可以提升系统的效率。

  
肖特基二极管(SBD) 的结构:


 

  肖特基二极体是利用金属-半导体接面作为肖特基势垒,以产生整流的效果,和一般二极管中由半导体-半导体接面产生的P-N接面不同。肖特基势垒的特性使得肖特基二极体的导通电压降较低,而且可以提高切换的速度。

  肖特基二极管在结构原理上与PN结二极管有很大区别,它的内部是由阳极金属(用钼或铝等材料制成的阻挡层)、二氧化硅(SiO2)电场消除材料、N-外延层(砷材料)、N型硅基片、N+阴极层及阴极金属等构成。在N型基片和阳极金属之间形成肖特基势垒。当在肖特基势垒两端加上正向偏压(阳极金属接电源正极,N型基片接电源负极)时,肖特基势垒层变窄,其内阻变小;反之,若在肖特基势垒两端加上反向偏压时,肖特基势垒层则变宽,其内阻变大。

  肖特基二极管分为有引线和表面安装(贴片式)两种封装形式。采用有引线式封装的肖特基二极管通常作为高频大电流整流二极管、续流二极管或保护二极管使用。它有单管式和对管(双二极管)式两种封装形式。

  肖特基对管又有共阴(两管的负极相连)、共阳(两管的正极相连)和串联(一只二极管的正极接另一只二极管的负极)三种管脚引出方式。采用表面封装的肖特基二极管有单管型、双管型和三管型等多种封装形式。

  肖特基二极管(SBD) 的原理:



 

  在金属(例如铅)和半导体(N型硅片)的接触面上,用已形成的肖特基来阻挡反向电压。肖特基与PN结的整流作用原理有根本性的差异。其耐压程度只有40V左右。其特长是:开关速度非常快:反向恢复时间特别地短。因此,能制作开关二极和低压大电流整流二极管。肖特基二极管(Schottky Barrier Diode)是具有肖特基特性的“金属半导体结”的二极管。其正向起始电压较低。其金属层除钨材料外,还可以采用金、钼、镍、钛等材料。其半导体材料采用硅或砷化镓,多为型半导体。这种器件是由多数载流子导电的,所以,其反向饱和电流较以少数载流子导电的PN结大得多。由于肖特基二极管中少数载流子的存贮效应甚微,所以其频率响仅为RC时间常数限制,因而,它是高频和快速开关的理想器件。其工作频率可达100GHz。并且,MIS(金属-绝缘体-半导体)肖特基二极管可以用来制作太阳能电池或发光二极管。

  肖特基二极管利用金属与半导体接触所形成的势垒对电流进行控制。它的主要特点是具有较低的正向压降(0.3V至0.6V);另外它是多子参与导电,这就比少子器件有更快的反应速度。肖特基二极管常用在门电路中作为三极管集电极的箝位二极管,以防止三极管因进入饱和状态而降低开关速度。

  肖特基二极管(SBD) 的反向恢复时间:



 

  肖特基二极体和一般二极管*大的差异在于反向恢复时间,也就是二极管由流过正向电流的导通状态,切换到不导通状态所需的时间。

  一般二极管的反向恢复时间大约是数百 nS,若是高速二极管则会低于一百 nS,肖特基二极体没有反向恢复时间,因此小信号的肖特基二极体切换时间约为数十 pS,特殊的大容量肖特基二极体切换时间也才数十 pS。由于一般二极管在反向恢复时间内会因反向电流而造成EMI噪声。肖特基二极体可以立即切换,没有反向恢复时间及反相电流的问题。

  肖特基二极体是一种使用多数载流子的半导体元件,若肖特基二极体是使用N型半导体,其二极管的特性是由多数载流子(即电子)所产生。多数载流子快速地由半导体穿过接面,注入另一侧金属的传导带,由于此过程不涉及N 型、P 型载流子的结合(随机反应而且需要时间较长),因此肖特基二极体停止导通的速度会比传统的二极管速度要快。这样的特性使得元件需要的面积可以减少,又进一步的减少切换所需的时间。在切换式电源供应器中常会用到肖特基二极体,因为肖特基二极体允许高速切换,电路可以在200kHz到2MHz的频率下操作,也就可以使用较小的电感器电容器,同时可以提升电源供应器的效率。小体积的肖特基二极体*高可工作在50GHz的频率,因此是 RF 侦测器及 mixer 中的重要零件。

  肖特基二极管(SBD) 的检测:



 

  1.性能比较:

  肖特基二极管现超快恢复二极管、快恢复二极管、硅高频整流二极管、硅高速开关二极管的性能比较。可见,硅高速开关二极管的trr虽极低,但平均整流电流很小,不能作大电流整流用。

  2.检测方法:

  检测内容包括:a.识别电极;b.检查管子的单向导电性;c.测正向导压降VF;d.测量反向击穿电压VBR。

  被测管为B82-004型肖特基管,共有三个管脚,将管脚按照正面(字面朝向人)从左至右顺序编上序号①、②、③。选择500型万用表的R×1档进行测量,全部数据整理如下:

  **,根据①—②、③—④间均可测出正向电阻,判定被测管为共阴对管,①、③脚为两个阳极,②脚为公共阴极。   
     
      **,因①—②、③—②之间的正向电阻只几欧姆,而反向电阻为无穷大,故具有单向导电性。

  第三,内部两只肖特基二极管的正向导通压降分别为0.315V、0.33V,均低于手册中给定的*大允许值VFM(0.55V)。

  肖特基二极管(SBD) 与普通二极管的区别:



 

  1. 两种二极管都是单向导电,可用于整流场合。区别是普通硅二极管的耐压可以做得较高,但是它的恢复速度低,只能用在低频的整流上,如果是高频的就会因为无法快速恢复而发生反向漏电,*后导致管子严重发热烧毁;肖特基二极管的耐压能常较低,但是它的恢复速度快,可以用在高频场合,故开关电源采用此种二极管作为整流输出用,尽管如此,开关电源上的整流管温度还是很高的。

  2.快恢复二极管是指反向恢复时间很短的二极管(5us以下),工艺上多采用掺金措施,结构上有采用PN结型结构,有的采用改进的PIN结构。其正向压降高于普通二极管(1-2V),反向耐压多在1200V以下。从性能上可分为快恢复和超快恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100纳秒以下。 肖特基二极管是以金属和半导体接触形成的势垒为基础的二极管,简称肖特基二极管(Schottky Barrier Diode),具有正向压降低(0.4--0.5V)、反向恢复时间很短(10-40纳秒),而且反向漏电流较大,耐压低,一般低150V,多用于低电压场合。 这两种管子通常用于开关电源。

  3.外观区分:

  除了型号,外形上一般没什么区别,但可以测量正向压降进行区别,直接用数字万用表测(小电流)普通二极管在0.5V以上,肖特基二极管在0.3V以下,大电流时普通二极管在0.8V左右,肖特基二极管在0.5V以下;SR350 就是表示3A50V。另肖特基二极管耐压一般在100V以下,没有150V以上的。

  肖特基二极管(SBD) 的应用分析:


 

  在电源管理中的应用:

  检查损耗

  图1给出了非同步直流/直流降压转换器的基本框图。D1是所需的肖特基管。左侧是开关S1闭合时(时间为T1)的电流情况,右侧是开关S1打开时(时间为T2)的电流情况。

  

  图1:非同步直流/直流降压转换器基本框图。

  当时间为T2时,输出电流(Iout)流经D1。所产生的损耗与D1的正向电压(Vfw)和输出电流直接相关。PT2等于Iout*Vfw。显然,我们希望尽可能降低以控制损耗,减少发热。

  T1期间,D1处于阻断状态。**的电流是反向电流。此电流相对较弱,并且主要由阻断电压或输入电压Vin决定。T1阶段二极管产生的功耗,称为PT1,大致等于Ir*Vin。

  对于任何肖特基二极管,在设计时都存在一个取舍。即此设备要么针对低Vf进行优化,要么针对低Ir进行优化。因此,如果选择低Vf,则Ir就较高,反之亦然。在实际应用设计时,重要的是不仅要观察Vf或Ir的值,还要分析它们在实际操作中会产生什么结果。Vf和Ir都会随温度变化而改变。当温度升高,Vf会降低,在二极管升温的同时降低了热扩散。但非常不幸的是,Ir会随着二极管温度升高而增加。所以,二极管温度越高,漏电流就越多,内部功耗就越多,这样就使得二极管温度更高,从而再次增加漏电流,如此循环。

  如果坚持采用基本的非同步直流/直流转换器的设计案例,不妨做一个基本分析以确定二极管内部功耗和由此导致的设备温度。直流/直流转换器的运行占空比与电压输入输出的比值直接相关(DC=Vout/Vin)。电压输入和输出的比值越低,T2的时间就越长,PT2对整个二极管的功耗影响也就越大。反之亦然,T1越长(或和的比值越高),PT2对总功耗的影响就越小,PT1的作用就越大。

  以两个直流/直流转换器为例,两个都是24V输入电压,但其中一个是18V输出电压而另一个是5V。使用Vin和Vout的比值计算得到占空比,并且使用数据表中的Vf和Ir值计算出二极管内总功率的损失。然后根据总功耗计算出由此导致的二极管温度,并查找在此温度下的Vf和Ir实际数值。*后根据新的二极管温度重新算出内部功耗。这个迭代过程可以重复多次以提高**度,但如果只想大致表明Vf和Ir的不同取舍所产生的影响,单次迭代就足够了。

  设备温度可使用描述热性质的基本热方程计算,和用于描述电压,电流,电阻的计算并无不同。一旦知道了设备的内部功耗(Ptot),就可以用它乘以结点到环境的热阻(Rtja),计算出设备结点处的温度变化。把它加上环境温度,就得到了该设备在此功耗和环境温度下的*终结点温度。

  图2表示的是分析结果。此例中的计算使用了PMEG3050BEP(优化为低Ir)和PMEG3050EP(优化为低Vf)二极管。输出电流范围为1~3A。这里比较了低Vf型和低Ir型二极管的温度。初始温度假定为25℃��图中同时给出了Ta(**次传递温度计算)和Tb(**次传递)。左侧是5V输出的直流/直流转换器的结果,右侧是18V输出的直流/直流转换器(两者的输入电压都是24V)。计算时假定Rtja采用基本的200K/W,然后根据占空比进行调节。肖特基二极管的数据表给出了瞬时热效应曲线,允许设计者根据具体的脉冲占空比(短暂脉冲电流的热效应要优于连续电流)决定实际的热阻。请注意,任何应用中的二极管总热阻取决于很多因素,布局是其中较为重要的一个。

  

  图2:两个直流/直流转换器的分析结果。

  在图2中可以发现,在上述两种情况中,在**次温度传递Tb时,低Vf的二极管开始变热。其中的原理是,在电流一定的情况下,二极管因在T2时产生损耗而变热。随着二极管温度升高,漏电流If增加,正向电压Vf减少。然而,增加的速度远高于减少的速度。其结果就是二极管内的总功耗增加较快。在较高的输出电流下PT2也较高,使得PT1增加较快,所以在高电流下斜率较为陡峭。

  同样,从中也能看到输入输出电压比的效果。左侧显示的是5V输出、低占空比直流/直流转换器。占空比较低意味着T2较长,PT2就更多。因此,较多的初始热量导致Ir增加更快,PT1更高。*终结果就是随着输出电流增加,二极管温度迅速上升。在较高的电流下,可以看到事实上温度已超出了指定范围之外。右侧显示较高的18V输出电压导致更高的占空比,从而抑制了PT2。二极管内较少的发热量意味着Ir增加较少,因此,PT1和总体温度也都增加较少。

  可以得出结论,占空比越高(或者说输出电压和输入电压越接近),二极管的热效应就越佳。例如,如果如前述计算,12V到2.5V的转换器要比12V到5V的转换器更能加重二极管的负担。

  热逃逸

  以上讨论的随温度升高而增加的效应会带来一个普遍问题,叫作热逃逸。升高的温度会导致温度进一步升高,直到部件损坏。因此,强烈建议在所有设计中彻底检查此现象。

  目前常见的做法是对功耗设计进行模拟运行。可以使用标准的模拟工具,也可使用网上常用的模拟工具。仔细检查热效应是非常必要的。对于打算使用的二极管,极有可能所使用的工具并未采用正确的热模型,或者其热参数(很可能和布局相关)与设计不相符合。很显然,并非每个二极管都一模一样,因而**不赞同在模拟设计时使用“相似”的二极管,然后假定它们的热效应(以及潜在的电效应)也相似。虽然并非总是可行,但在此仍然建议始终制作原型并验证其正确效应。


肖特基二极管(SBD) 的相关阅读:
肖特基二极管应用与选择
肖特基二极管的应用注意说明
太阳能电池板使用之肖特基二极管
适合各种电源应用的碳化硅肖特基二极管